Cargando…
Opportune warning of COVID-19 in a Mexican health care worker cohort: Discrete beta distribution entropy of smartwatch physiological records
We present a statistical study of heart rate, step cadence, and sleep stage registers of health care workers in the Hospital General de México “Dr. Eduardo Liceaga” (HGM), monitored continuously and non-invasively during the COVID-19 contingency from May to October 2020, using the Fitbit Charge 3® S...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier Ltd.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10121132/ https://www.ncbi.nlm.nih.gov/pubmed/37125410 http://dx.doi.org/10.1016/j.bspc.2023.104975 |
Sumario: | We present a statistical study of heart rate, step cadence, and sleep stage registers of health care workers in the Hospital General de México “Dr. Eduardo Liceaga” (HGM), monitored continuously and non-invasively during the COVID-19 contingency from May to October 2020, using the Fitbit Charge 3® Smartwatch device. The HGM-COVID cohort consisted of 115 participants assigned to areas of COVID-19 exposure. We introduce a novel biomarker for an opportune signal for the likelihood of SARS-CoV-2 infection based on the Shannon Entropy of the Discrete Generalized Beta Distribution fit of rank ordered smartwatch registers. Our statistical test indicated infection for 94% of patients confirmed by positive polymer chain reaction (PCR+) test, 47% before the test, and 47% in coincidence. These results required innovative data preprocessing for the definition of a new biomarker index. The statistical method parameters are data-driven, confidence estimates were calibrated based on sensitivity tests using appropriately derived surrogate data as a benchmark. Our surrogate tests can also provide a benchmark for comparing results from other anomaly detection methods (ADMs). Biomarker comparison of the negative Immunoglobulin G Antibody (IgG-) subgroup with the PCR+ subgroup showed a statistically significant difference (p < 0.01, effect size = 1.44). The distribution of the uninfected population had a lower median and less dispersion than the PCR+ population. A retrospective study of our results confirmed that the biomarker index provides an early warning of the likelihood of COVID-19, even several days before the onset of symptoms or the PCR+ test request. The method can be calibrated for the analysis of different SARS-CoV-2 strains, the effect of vaccination, and previous infections. Furthermore, our biomarker screening could be implemented to provide general health profiles for other population sectors based on physiological signals from smartwatch wearable devices. |
---|