Cargando…

ADU-Net: An Attention Dense U-Net based deep supervised DNN for automated lesion segmentation of COVID-19 from chest CT images

An automatic method for qualitative and quantitative evaluation of chest Computed Tomography (CT) images is essential for diagnosing COVID-19 patients. We aim to develop an automated COVID-19 prediction framework using deep learning. We put forth a novel Deep Neural Network (DNN) composed of an atte...

Descripción completa

Detalles Bibliográficos
Autores principales: Saha, Sanjib, Dutta, Subhadeep, Goswami, Biswarup, Nandi, Debashis
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier Ltd. 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10121143/
https://www.ncbi.nlm.nih.gov/pubmed/37122956
http://dx.doi.org/10.1016/j.bspc.2023.104974
Descripción
Sumario:An automatic method for qualitative and quantitative evaluation of chest Computed Tomography (CT) images is essential for diagnosing COVID-19 patients. We aim to develop an automated COVID-19 prediction framework using deep learning. We put forth a novel Deep Neural Network (DNN) composed of an attention-based dense U-Net with deep supervision for COVID-19 lung lesion segmentation from chest CT images. We incorporate dense U-Net where convolution kernel size 5×5 is used instead of 3×3. The dense and transition blocks are introduced to implement a densely connected network on each encoder level. Also, the attention mechanism is applied between the encoder, skip connection, and decoder. These are used to keep both the high and low-level features efficiently. The deep supervision mechanism creates secondary segmentation maps from the features. Deep supervision combines secondary supervision maps from various resolution levels and produces a better final segmentation map. The trained artificial DNN model takes the test data at its input and generates a prediction output for COVID-19 lesion segmentation. The proposed model has been applied to the MedSeg COVID-19 chest CT segmentation dataset. Data pre-processing methods help the training process and improve performance. We compare the performance of the proposed DNN model with state-of-the-art models by computing the well-known metrics: dice coefficient, Jaccard coefficient, accuracy, specificity, sensitivity, and precision. As a result, the proposed model outperforms the state-of-the-art models. This new model may be considered an efficient automated screening system for COVID-19 diagnosis and can potentially improve patient health care and management system.