Cargando…
Simple lessons from complex learning: what a neural network model learns about cosmic structure formation
We train a neural network model to predict the full phase space evolution of cosmological N-body simulations. Its success implies that the neural network model is accurately approximating the Green’s function expansion that relates the initial conditions of the simulations to its outcome at later ti...
Autores principales: | Jamieson, Drew, Li, Yin, He, Siyu, Villaescusa-Navarro, Francisco, Ho, Shirley, de Oliveira, Renan Alves, Spergel, David N |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10121177/ https://www.ncbi.nlm.nih.gov/pubmed/37091548 http://dx.doi.org/10.1093/pnasnexus/pgac250 |
Ejemplares similares
-
What can we learn about multiparticle production from cosmic ray events?
por: Jones, L W
Publicado: (2000) -
Neural networks and statistical learning
por: Du, Ke-Lin, et al.
Publicado: (2014) -
Augmenting astrophysical scaling relations with machine learning: Application to reducing the Sunyaev–Zeldovich flux–mass scatter
por: Wadekar, Digvijay, et al.
Publicado: (2023) -
PID Control in the Third Millennium: Lessons Learned and New Approaches
por: Vilanova, Ramon, et al.
Publicado: (2012) -
Cosmic debris: what it is and what we can do about it
por: Powell, Jonathan
Publicado: (2017)