Cargando…
Developing DELPHI expert consensus rules for a digital twin model of acute stroke care in the neuro critical care unit
INTRODUCTION: Digital twins, a form of artificial intelligence, are virtual representations of the physical world. In the past 20 years, digital twins have been utilized to track wind turbines' operations, monitor spacecraft's status, and even create a model of the Earth for climate resear...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10121414/ https://www.ncbi.nlm.nih.gov/pubmed/37085850 http://dx.doi.org/10.1186/s12883-023-03192-9 |
_version_ | 1785029372292366336 |
---|---|
author | Dang, Johnny Lal, Amos Montgomery, Amy Flurin, Laure Litell, John Gajic, Ognjen Rabinstein, Alejandro |
author_facet | Dang, Johnny Lal, Amos Montgomery, Amy Flurin, Laure Litell, John Gajic, Ognjen Rabinstein, Alejandro |
author_sort | Dang, Johnny |
collection | PubMed |
description | INTRODUCTION: Digital twins, a form of artificial intelligence, are virtual representations of the physical world. In the past 20 years, digital twins have been utilized to track wind turbines' operations, monitor spacecraft's status, and even create a model of the Earth for climate research. While digital twins hold much promise for the neurocritical care unit, the question remains on how to best establish the rules that govern these models. This model will expand on our group’s existing digital twin model for the treatment of sepsis. METHODS: The authors of this project collaborated to create a Direct Acyclic Graph (DAG) and an initial series of 20 DELPHI statements, each with six accompanying sub-statements that captured the pathophysiology surrounding the management of acute ischemic strokes in the practice of Neurocritical Care (NCC). Agreement from a panel of 18 experts in the field of NCC was collected through a 7-point Likert scale with consensus defined a-priori by ≥ 80% selection of a 6 (“agree”) or 7 (“strongly agree”). The endpoint of the study was defined as the completion of three separate rounds of DELPHI consensus. DELPHI statements that had met consensus would not be included in subsequent rounds of DELPHI consensus. The authors refined DELPHI statements that did not reach consensus with the guidance of de-identified expert comments for subsequent rounds of DELPHI. All DELPHI statements that reached consensus by the end of three rounds of DELPHI consensus would go on to be used to inform the construction of the digital twin model. RESULTS: After the completion of three rounds of DELPHI, 93 (77.5%) statements reached consensus, 11 (9.2%) statements were excluded, and 16 (13.3%) statements did not reach a consensus of the original 120 DELPHI statements. CONCLUSION: This descriptive study demonstrates the use of the DELPHI process to generate consensus among experts and establish a set of rules for the development of a digital twin model for use in the neurologic ICU. Compared to associative models of AI, which develop rules based on finding associations in datasets, digital twin AI created by the DELPHI process are easily interpretable models based on a current understanding of underlying physiology. |
format | Online Article Text |
id | pubmed-10121414 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-101214142023-04-23 Developing DELPHI expert consensus rules for a digital twin model of acute stroke care in the neuro critical care unit Dang, Johnny Lal, Amos Montgomery, Amy Flurin, Laure Litell, John Gajic, Ognjen Rabinstein, Alejandro BMC Neurol Research INTRODUCTION: Digital twins, a form of artificial intelligence, are virtual representations of the physical world. In the past 20 years, digital twins have been utilized to track wind turbines' operations, monitor spacecraft's status, and even create a model of the Earth for climate research. While digital twins hold much promise for the neurocritical care unit, the question remains on how to best establish the rules that govern these models. This model will expand on our group’s existing digital twin model for the treatment of sepsis. METHODS: The authors of this project collaborated to create a Direct Acyclic Graph (DAG) and an initial series of 20 DELPHI statements, each with six accompanying sub-statements that captured the pathophysiology surrounding the management of acute ischemic strokes in the practice of Neurocritical Care (NCC). Agreement from a panel of 18 experts in the field of NCC was collected through a 7-point Likert scale with consensus defined a-priori by ≥ 80% selection of a 6 (“agree”) or 7 (“strongly agree”). The endpoint of the study was defined as the completion of three separate rounds of DELPHI consensus. DELPHI statements that had met consensus would not be included in subsequent rounds of DELPHI consensus. The authors refined DELPHI statements that did not reach consensus with the guidance of de-identified expert comments for subsequent rounds of DELPHI. All DELPHI statements that reached consensus by the end of three rounds of DELPHI consensus would go on to be used to inform the construction of the digital twin model. RESULTS: After the completion of three rounds of DELPHI, 93 (77.5%) statements reached consensus, 11 (9.2%) statements were excluded, and 16 (13.3%) statements did not reach a consensus of the original 120 DELPHI statements. CONCLUSION: This descriptive study demonstrates the use of the DELPHI process to generate consensus among experts and establish a set of rules for the development of a digital twin model for use in the neurologic ICU. Compared to associative models of AI, which develop rules based on finding associations in datasets, digital twin AI created by the DELPHI process are easily interpretable models based on a current understanding of underlying physiology. BioMed Central 2023-04-22 /pmc/articles/PMC10121414/ /pubmed/37085850 http://dx.doi.org/10.1186/s12883-023-03192-9 Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/ (https://creativecommons.org/publicdomain/zero/1.0/) ) applies to the data made available in this article, unless otherwise stated in a credit line to the data. |
spellingShingle | Research Dang, Johnny Lal, Amos Montgomery, Amy Flurin, Laure Litell, John Gajic, Ognjen Rabinstein, Alejandro Developing DELPHI expert consensus rules for a digital twin model of acute stroke care in the neuro critical care unit |
title | Developing DELPHI expert consensus rules for a digital twin model of acute stroke care in the neuro critical care unit |
title_full | Developing DELPHI expert consensus rules for a digital twin model of acute stroke care in the neuro critical care unit |
title_fullStr | Developing DELPHI expert consensus rules for a digital twin model of acute stroke care in the neuro critical care unit |
title_full_unstemmed | Developing DELPHI expert consensus rules for a digital twin model of acute stroke care in the neuro critical care unit |
title_short | Developing DELPHI expert consensus rules for a digital twin model of acute stroke care in the neuro critical care unit |
title_sort | developing delphi expert consensus rules for a digital twin model of acute stroke care in the neuro critical care unit |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10121414/ https://www.ncbi.nlm.nih.gov/pubmed/37085850 http://dx.doi.org/10.1186/s12883-023-03192-9 |
work_keys_str_mv | AT dangjohnny developingdelphiexpertconsensusrulesforadigitaltwinmodelofacutestrokecareintheneurocriticalcareunit AT lalamos developingdelphiexpertconsensusrulesforadigitaltwinmodelofacutestrokecareintheneurocriticalcareunit AT montgomeryamy developingdelphiexpertconsensusrulesforadigitaltwinmodelofacutestrokecareintheneurocriticalcareunit AT flurinlaure developingdelphiexpertconsensusrulesforadigitaltwinmodelofacutestrokecareintheneurocriticalcareunit AT litelljohn developingdelphiexpertconsensusrulesforadigitaltwinmodelofacutestrokecareintheneurocriticalcareunit AT gajicognjen developingdelphiexpertconsensusrulesforadigitaltwinmodelofacutestrokecareintheneurocriticalcareunit AT rabinsteinalejandro developingdelphiexpertconsensusrulesforadigitaltwinmodelofacutestrokecareintheneurocriticalcareunit AT developingdelphiexpertconsensusrulesforadigitaltwinmodelofacutestrokecareintheneurocriticalcareunit |