Cargando…

Deep phenotyping as a contribution to personalized depression therapy: the GEParD and DaCFail protocols

Depressive patients suffer from a complex of symptoms of varying intensity compromising their mood, emotions, self-concept, neurocognition, and somatic function. Due to a mosaic of aetiologies involved in developing depression, such as somatic, neurobiological, (epi-)genetic factors, or adverse life...

Descripción completa

Detalles Bibliográficos
Autores principales: Lichter, Katharina, Klüpfel, Catherina, Stonawski, Saskia, Hommers, Leif, Blickle, Manuel, Burschka, Carolin, Das, Felix, Heißler, Marlene, Hellmuth, Anna, Helmel, Jaqueline, Kranemann, Leonie, Lechner, Karin, Lehrieder, Dominik, Sauter, Amelie, Schiele, Miriam A., Vijayakumar, Vithusha, von Broen, Michael, Weiß, Carolin, Morbach, Caroline, Störk, Stefan, Gelbrich, Götz, Heuschmann, Peter U., Higuchi, Takahiro, Buck, Andreas, Homola, György A., Pham, Mirko, Menke, Andreas, Domschke, Katharina, Kittel-Schneider, Sarah, Deckert, Jürgen
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Vienna 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10121520/
https://www.ncbi.nlm.nih.gov/pubmed/36959471
http://dx.doi.org/10.1007/s00702-023-02615-8
_version_ 1785029387560681472
author Lichter, Katharina
Klüpfel, Catherina
Stonawski, Saskia
Hommers, Leif
Blickle, Manuel
Burschka, Carolin
Das, Felix
Heißler, Marlene
Hellmuth, Anna
Helmel, Jaqueline
Kranemann, Leonie
Lechner, Karin
Lehrieder, Dominik
Sauter, Amelie
Schiele, Miriam A.
Vijayakumar, Vithusha
von Broen, Michael
Weiß, Carolin
Morbach, Caroline
Störk, Stefan
Gelbrich, Götz
Heuschmann, Peter U.
Higuchi, Takahiro
Buck, Andreas
Homola, György A.
Pham, Mirko
Menke, Andreas
Domschke, Katharina
Kittel-Schneider, Sarah
Deckert, Jürgen
author_facet Lichter, Katharina
Klüpfel, Catherina
Stonawski, Saskia
Hommers, Leif
Blickle, Manuel
Burschka, Carolin
Das, Felix
Heißler, Marlene
Hellmuth, Anna
Helmel, Jaqueline
Kranemann, Leonie
Lechner, Karin
Lehrieder, Dominik
Sauter, Amelie
Schiele, Miriam A.
Vijayakumar, Vithusha
von Broen, Michael
Weiß, Carolin
Morbach, Caroline
Störk, Stefan
Gelbrich, Götz
Heuschmann, Peter U.
Higuchi, Takahiro
Buck, Andreas
Homola, György A.
Pham, Mirko
Menke, Andreas
Domschke, Katharina
Kittel-Schneider, Sarah
Deckert, Jürgen
author_sort Lichter, Katharina
collection PubMed
description Depressive patients suffer from a complex of symptoms of varying intensity compromising their mood, emotions, self-concept, neurocognition, and somatic function. Due to a mosaic of aetiologies involved in developing depression, such as somatic, neurobiological, (epi-)genetic factors, or adverse life events, patients often experience recurrent depressive episodes. About 20–30% of these patients develop difficult-to-treat depression. Here, we describe the design of the GEParD (Genetics and Epigenetics of Pharmaco- and Psychotherapy in acute and recurrent Depression) cohort and the DaCFail (Depression-associated Cardiac Failure) case–control protocol. Both protocols intended to investigate the incremental utility of multimodal biomarkers including cardiovascular and (epi-)genetic markers, functional brain and heart imaging when evaluating the response to antidepressive therapy using comprehensive psychometry. From 2012 to 2020, 346 depressed patients (mean age 45 years) were recruited to the prospective, observational GEParD cohort protocol. Between 2016 and 2020, the DaCFail case–control protocol was initiated integrating four study subgroups to focus on heart-brain interactions and stress systems in patients > 50 years with depression and heart failure, respectively. For DaCFail, 120 depressed patients (mean age 60 years, group 1 + 2), of which 115 also completed GEParD, and 95 non-depressed controls (mean age 66 years) were recruited. The latter comprised 47 patients with heart failure (group 3) and 48 healthy subjects (group 4) of a population-based control group derived from the Characteristics and Course of Heart Failure Stages A–B and Determinants of Progression (STAAB) cohort study. Our hypothesis-driven, exploratory study design may serve as an exemplary roadmap for a standardized, reproducible investigation of personalized antidepressant therapy in an inpatient setting with focus on heart comorbidities in future multicentre studies.
format Online
Article
Text
id pubmed-10121520
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Springer Vienna
record_format MEDLINE/PubMed
spelling pubmed-101215202023-04-23 Deep phenotyping as a contribution to personalized depression therapy: the GEParD and DaCFail protocols Lichter, Katharina Klüpfel, Catherina Stonawski, Saskia Hommers, Leif Blickle, Manuel Burschka, Carolin Das, Felix Heißler, Marlene Hellmuth, Anna Helmel, Jaqueline Kranemann, Leonie Lechner, Karin Lehrieder, Dominik Sauter, Amelie Schiele, Miriam A. Vijayakumar, Vithusha von Broen, Michael Weiß, Carolin Morbach, Caroline Störk, Stefan Gelbrich, Götz Heuschmann, Peter U. Higuchi, Takahiro Buck, Andreas Homola, György A. Pham, Mirko Menke, Andreas Domschke, Katharina Kittel-Schneider, Sarah Deckert, Jürgen J Neural Transm (Vienna) Psychiatry and Preclinical Psychiatric Studies - Original Article Depressive patients suffer from a complex of symptoms of varying intensity compromising their mood, emotions, self-concept, neurocognition, and somatic function. Due to a mosaic of aetiologies involved in developing depression, such as somatic, neurobiological, (epi-)genetic factors, or adverse life events, patients often experience recurrent depressive episodes. About 20–30% of these patients develop difficult-to-treat depression. Here, we describe the design of the GEParD (Genetics and Epigenetics of Pharmaco- and Psychotherapy in acute and recurrent Depression) cohort and the DaCFail (Depression-associated Cardiac Failure) case–control protocol. Both protocols intended to investigate the incremental utility of multimodal biomarkers including cardiovascular and (epi-)genetic markers, functional brain and heart imaging when evaluating the response to antidepressive therapy using comprehensive psychometry. From 2012 to 2020, 346 depressed patients (mean age 45 years) were recruited to the prospective, observational GEParD cohort protocol. Between 2016 and 2020, the DaCFail case–control protocol was initiated integrating four study subgroups to focus on heart-brain interactions and stress systems in patients > 50 years with depression and heart failure, respectively. For DaCFail, 120 depressed patients (mean age 60 years, group 1 + 2), of which 115 also completed GEParD, and 95 non-depressed controls (mean age 66 years) were recruited. The latter comprised 47 patients with heart failure (group 3) and 48 healthy subjects (group 4) of a population-based control group derived from the Characteristics and Course of Heart Failure Stages A–B and Determinants of Progression (STAAB) cohort study. Our hypothesis-driven, exploratory study design may serve as an exemplary roadmap for a standardized, reproducible investigation of personalized antidepressant therapy in an inpatient setting with focus on heart comorbidities in future multicentre studies. Springer Vienna 2023-03-23 2023 /pmc/articles/PMC10121520/ /pubmed/36959471 http://dx.doi.org/10.1007/s00702-023-02615-8 Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Psychiatry and Preclinical Psychiatric Studies - Original Article
Lichter, Katharina
Klüpfel, Catherina
Stonawski, Saskia
Hommers, Leif
Blickle, Manuel
Burschka, Carolin
Das, Felix
Heißler, Marlene
Hellmuth, Anna
Helmel, Jaqueline
Kranemann, Leonie
Lechner, Karin
Lehrieder, Dominik
Sauter, Amelie
Schiele, Miriam A.
Vijayakumar, Vithusha
von Broen, Michael
Weiß, Carolin
Morbach, Caroline
Störk, Stefan
Gelbrich, Götz
Heuschmann, Peter U.
Higuchi, Takahiro
Buck, Andreas
Homola, György A.
Pham, Mirko
Menke, Andreas
Domschke, Katharina
Kittel-Schneider, Sarah
Deckert, Jürgen
Deep phenotyping as a contribution to personalized depression therapy: the GEParD and DaCFail protocols
title Deep phenotyping as a contribution to personalized depression therapy: the GEParD and DaCFail protocols
title_full Deep phenotyping as a contribution to personalized depression therapy: the GEParD and DaCFail protocols
title_fullStr Deep phenotyping as a contribution to personalized depression therapy: the GEParD and DaCFail protocols
title_full_unstemmed Deep phenotyping as a contribution to personalized depression therapy: the GEParD and DaCFail protocols
title_short Deep phenotyping as a contribution to personalized depression therapy: the GEParD and DaCFail protocols
title_sort deep phenotyping as a contribution to personalized depression therapy: the gepard and dacfail protocols
topic Psychiatry and Preclinical Psychiatric Studies - Original Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10121520/
https://www.ncbi.nlm.nih.gov/pubmed/36959471
http://dx.doi.org/10.1007/s00702-023-02615-8
work_keys_str_mv AT lichterkatharina deepphenotypingasacontributiontopersonalizeddepressiontherapythegepardanddacfailprotocols
AT klupfelcatherina deepphenotypingasacontributiontopersonalizeddepressiontherapythegepardanddacfailprotocols
AT stonawskisaskia deepphenotypingasacontributiontopersonalizeddepressiontherapythegepardanddacfailprotocols
AT hommersleif deepphenotypingasacontributiontopersonalizeddepressiontherapythegepardanddacfailprotocols
AT blicklemanuel deepphenotypingasacontributiontopersonalizeddepressiontherapythegepardanddacfailprotocols
AT burschkacarolin deepphenotypingasacontributiontopersonalizeddepressiontherapythegepardanddacfailprotocols
AT dasfelix deepphenotypingasacontributiontopersonalizeddepressiontherapythegepardanddacfailprotocols
AT heißlermarlene deepphenotypingasacontributiontopersonalizeddepressiontherapythegepardanddacfailprotocols
AT hellmuthanna deepphenotypingasacontributiontopersonalizeddepressiontherapythegepardanddacfailprotocols
AT helmeljaqueline deepphenotypingasacontributiontopersonalizeddepressiontherapythegepardanddacfailprotocols
AT kranemannleonie deepphenotypingasacontributiontopersonalizeddepressiontherapythegepardanddacfailprotocols
AT lechnerkarin deepphenotypingasacontributiontopersonalizeddepressiontherapythegepardanddacfailprotocols
AT lehriederdominik deepphenotypingasacontributiontopersonalizeddepressiontherapythegepardanddacfailprotocols
AT sauteramelie deepphenotypingasacontributiontopersonalizeddepressiontherapythegepardanddacfailprotocols
AT schielemiriama deepphenotypingasacontributiontopersonalizeddepressiontherapythegepardanddacfailprotocols
AT vijayakumarvithusha deepphenotypingasacontributiontopersonalizeddepressiontherapythegepardanddacfailprotocols
AT vonbroenmichael deepphenotypingasacontributiontopersonalizeddepressiontherapythegepardanddacfailprotocols
AT weißcarolin deepphenotypingasacontributiontopersonalizeddepressiontherapythegepardanddacfailprotocols
AT morbachcaroline deepphenotypingasacontributiontopersonalizeddepressiontherapythegepardanddacfailprotocols
AT storkstefan deepphenotypingasacontributiontopersonalizeddepressiontherapythegepardanddacfailprotocols
AT gelbrichgotz deepphenotypingasacontributiontopersonalizeddepressiontherapythegepardanddacfailprotocols
AT heuschmannpeteru deepphenotypingasacontributiontopersonalizeddepressiontherapythegepardanddacfailprotocols
AT higuchitakahiro deepphenotypingasacontributiontopersonalizeddepressiontherapythegepardanddacfailprotocols
AT buckandreas deepphenotypingasacontributiontopersonalizeddepressiontherapythegepardanddacfailprotocols
AT homolagyorgya deepphenotypingasacontributiontopersonalizeddepressiontherapythegepardanddacfailprotocols
AT phammirko deepphenotypingasacontributiontopersonalizeddepressiontherapythegepardanddacfailprotocols
AT menkeandreas deepphenotypingasacontributiontopersonalizeddepressiontherapythegepardanddacfailprotocols
AT domschkekatharina deepphenotypingasacontributiontopersonalizeddepressiontherapythegepardanddacfailprotocols
AT kittelschneidersarah deepphenotypingasacontributiontopersonalizeddepressiontherapythegepardanddacfailprotocols
AT deckertjurgen deepphenotypingasacontributiontopersonalizeddepressiontherapythegepardanddacfailprotocols