Cargando…
Variable selection using a smooth information criterion for distributional regression models
Modern variable selection procedures make use of penalization methods to execute simultaneous model selection and estimation. A popular method is the least absolute shrinkage and selection operator, the use of which requires selecting the value of a tuning parameter. This parameter is typically tune...
Autores principales: | O’Neill, Meadhbh, Burke, Kevin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10121547/ https://www.ncbi.nlm.nih.gov/pubmed/37155560 http://dx.doi.org/10.1007/s11222-023-10204-8 |
Ejemplares similares
-
Practical advice on variable selection and reporting using Akaike information criterion
por: Sutherland, Chris, et al.
Publicado: (2023) -
Performance of Akaike Information Criterion and Bayesian Information Criterion in Selecting Partition Models and Mixture Models
por: Liu, Qin, et al.
Publicado: (2022) -
An Information Criterion for Auxiliary Variable Selection in Incomplete Data Analysis
por: Imori, Shinpei, et al.
Publicado: (2019) -
A primer on model selection using the Akaike Information Criterion
por: Portet, Stéphanie
Publicado: (2020) -
No rationale for 1 variable per 10 events criterion for binary logistic regression analysis
por: van Smeden, Maarten, et al.
Publicado: (2016)