Cargando…
A Large-scale Synthetic Pathological Dataset for Deep Learning-enabled Segmentation of Breast Cancer
The success of training computer-vision models heavily relies on the support of large-scale, real-world images with annotations. Yet such an annotation-ready dataset is difficult to curate in pathology due to the privacy protection and excessive annotation burden. To aid in computational pathology,...
Autores principales: | Ding, Kexin, Zhou, Mu, Wang, He, Gevaert, Olivier, Metaxas, Dimitris, Zhang, Shaoting |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10121551/ https://www.ncbi.nlm.nih.gov/pubmed/37085533 http://dx.doi.org/10.1038/s41597-023-02125-y |
Ejemplares similares
-
A high-resolution large-scale dataset of pathological and normal white blood cells
por: Bodzas, Alexandra, et al.
Publicado: (2023) -
A large-scale optical microscopy image dataset of potato tuber for deep learning based plant cell assessment
por: Biswas, Sumona, et al.
Publicado: (2020) -
A large-scale dataset of in vivo pharmacology assay results
por: Hunter, Fiona M. I., et al.
Publicado: (2018) -
The DeepFish computer vision dataset for fish instance segmentation, classification, and size estimation
por: Garcia-d’Urso, Nahuel, et al.
Publicado: (2022) -
A synthetic building operation dataset
por: Li, Han, et al.
Publicado: (2021)