Cargando…
Effect of distance measures on confidences of t-SNE embeddings and its implications on clustering for scRNA-seq data
Arguably one of the most famous dimensionality reduction algorithms of today is t-distributed stochastic neighbor embedding (t-SNE). Although being widely used for the visualization of scRNA-seq data, it is prone to errors as any algorithm and may lead to inaccurate interpretations of the visualized...
Autores principales: | Ozgode Yigin, Busra, Saygili, Gorkem |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10121641/ https://www.ncbi.nlm.nih.gov/pubmed/37085593 http://dx.doi.org/10.1038/s41598-023-32966-x |
Ejemplares similares
-
Continual learning approaches for single cell RNA sequencing data
por: Saygili, Gorkem, et al.
Publicado: (2023) -
An Overview of Deep Learning Algorithms and Their Applications in Neuropsychiatry
por: Guney, Gokhan, et al.
Publicado: (2021) -
Fast and memory-efficient scRNA-seq k-means clustering with various distances
por: Baker, Daniel N., et al.
Publicado: (2021) -
Conditional t-SNE: more informative t-SNE embeddings
por: Kang, Bo, et al.
Publicado: (2020) -
A clustering method for small scRNA-seq data based on subspace and weighted distance
por: Ning, Zilan, et al.
Publicado: (2023)