Cargando…
Unsupervised approach to decomposing neural tuning variability
Neural representation is often described by the tuning curves of individual neurons with respect to certain stimulus variables. Despite this tradition, it has become increasingly clear that neural tuning can vary substantially in accordance with a collection of internal and external factors. A chall...
Autores principales: | Zhu, Rong J. B., Wei, Xue-Xin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10121715/ https://www.ncbi.nlm.nih.gov/pubmed/37085524 http://dx.doi.org/10.1038/s41467-023-37982-z |
Ejemplares similares
-
Neural encoding with unsupervised spiking convolutional neural network
por: Wang, Chong, et al.
Publicado: (2023) -
Unsupervised Learning Techniques for Tune Cleaning Measurement
por: García Morales, Hector, et al.
Publicado: (2021) -
CAPES: Unsupervised Storage Performance Tuning Using Neural Network-Based Deep Reinforcement Learning
por: Miller, Ethan L.
Publicado: (2017) -
DRCNN: decomposing residual convolutional neural networks for time series forecasting
por: Zhu, Yuzhen, et al.
Publicado: (2023) -
Tuning Neural Synchronization: The Role of Variable Oscillation Frequencies in Neural Circuits
por: Lowet, Eric, et al.
Publicado: (2022)