Cargando…
Predicting disease genes based on multi-head attention fusion
BACKGROUND: The identification of disease-related genes is of great significance for the diagnosis and treatment of human disease. Most studies have focused on developing efficient and accurate computational methods to predict disease-causing genes. Due to the sparsity and complexity of biomedical d...
Autores principales: | Zhang, Linlin, Lu, Dianrong, Bi, Xuehua, Zhao, Kai, Yu, Guanglei, Quan, Na |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10122338/ https://www.ncbi.nlm.nih.gov/pubmed/37085750 http://dx.doi.org/10.1186/s12859-023-05285-1 |
Ejemplares similares
-
Prediction and risk stratification from hospital discharge records based on Hierarchical sLDA
por: Yu, Guanglei, et al.
Publicado: (2022) -
Modality attention fusion model with hybrid multi-head self-attention for video understanding
por: Zhuang, Xuqiang, et al.
Publicado: (2022) -
Multi-Head Spatiotemporal Attention Graph Convolutional Network for Traffic Prediction
por: Oluwasanmi, Ariyo, et al.
Publicado: (2023) -
Multi-Scale Mixed Attention Network for CT and MRI Image Fusion
por: Liu, Yang, et al.
Publicado: (2022) -
Real-time airplane detection using multi-dimensional attention and feature fusion
por: Li, Li, et al.
Publicado: (2023)