Cargando…
Weakly supervised spatial relation extraction from radiology reports
OBJECTIVE: Weak supervision holds significant promise to improve clinical natural language processing by leveraging domain resources and expertise instead of large manually annotated datasets alone. Here, our objective is to evaluate a weak supervision approach to extract spatial information from ra...
Autores principales: | Datta, Surabhi, Roberts, Kirk |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10122604/ https://www.ncbi.nlm.nih.gov/pubmed/37096148 http://dx.doi.org/10.1093/jamiaopen/ooad027 |
Ejemplares similares
-
Not so weak PICO: leveraging weak supervision for participants, interventions, and outcomes recognition for systematic review automation
por: Dhrangadhariya, Anjani, et al.
Publicado: (2023) -
Weakly supervised natural language processing for assessing patient-centered outcome following prostate cancer treatment
por: Banerjee, Imon, et al.
Publicado: (2019) -
A dataset of chest X-ray reports annotated with Spatial Role Labeling annotations
por: Datta, Surabhi, et al.
Publicado: (2020) -
Biomedical relation extraction with knowledge base–refined weak supervision
por: Yoon, Wonjin, et al.
Publicado: (2023) -
Deep learning-based NLP data pipeline for EHR-scanned document information extraction
por: Hsu, Enshuo, et al.
Publicado: (2022)