Cargando…

Expression Profile of Pyroptosis-Related Genes and the Associated Regulatory Axis in Primary Gout Patients

PURPOSE: Analyzed the expression characteristics of pyroptosis-related genes (PRGs) in peripheral blood mononuclear cells (PBMCs) of gout patients by microarray, and constructed ceRNA network to explore the molecular mechanism of RNA-mediated pyroptosis regulation. PATIENTS AND METHODS: Human mRNA,...

Descripción completa

Detalles Bibliográficos
Autores principales: Niu, Shaowei, Lei, Tian-Yi, Dai, Fei, Xie, Hongyuan, Yu, Xiang, Zhang, Quanbo, Qing, Yufeng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Dove 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10122851/
https://www.ncbi.nlm.nih.gov/pubmed/37155429
http://dx.doi.org/10.2147/JIR.S407359
_version_ 1785029570845474816
author Niu, Shaowei
Lei, Tian-Yi
Dai, Fei
Xie, Hongyuan
Yu, Xiang
Zhang, Quanbo
Qing, Yufeng
author_facet Niu, Shaowei
Lei, Tian-Yi
Dai, Fei
Xie, Hongyuan
Yu, Xiang
Zhang, Quanbo
Qing, Yufeng
author_sort Niu, Shaowei
collection PubMed
description PURPOSE: Analyzed the expression characteristics of pyroptosis-related genes (PRGs) in peripheral blood mononuclear cells (PBMCs) of gout patients by microarray, and constructed ceRNA network to explore the molecular mechanism of RNA-mediated pyroptosis regulation. PATIENTS AND METHODS: Human mRNA, lncRNA, circRNA microarray data were used to identify differentially expressed in PBMCs from patients with primary gout and healthy controls. Differential PRGs in PBMCs of gout patients identified by Genecard database and mRNA microarray data. GO and KEGG enrichment analyses of these genes were then conducted. Protein-protein interaction networks and cytoHubba were used to identify hub genes. Combining the lncRNA and circRNA microarray data, a ceRNA network was constructed by Cytoscape to screen out key non-coding RNA molecules that can regulate target PRGs. Finally, the relative expression levels of target miRNA and circRNA in 60 gout patients and 40 healthy subjects were detected by qRT-PCR. RESULTS: The results revealed 30 differentially expressed PRGs. GO and KEGG analysis of these genes were mainly concentrated in the production and regulation of cytokines, NOD-like receptor signaling pathway and so on. Nine hub genes were screened by PPI network, including IL1B, DDX3X, NLRP3, NLRP9, AIM2, CASP8, P2XR7, CARD8 and IFI16. The has_circRNA_102906\hsa_circRNA_102910\hsa_circRNA_102911-hsa-miR-129-5p-DDX3X\NLRP3\NLRP9 regulatory network was constructed. The expression of has_circRNA_102906, hsa_circRNA_102910, hsa_circRNA_102911 were up-regulated and hsa-miR-129-5p down-regulated in PBMCs of gout patients. The relative expression of hsa_circRNA_102911 was positively correlated with clinical inflammatory indicators associated with gout, and the area under the curve of hsa_circRNA_102911 for gout diagnosis was 0.85 (95% CI: 0.775–0.925; p < 0.001). CONCLUSION: There are several differentially expressed PRGs in PBMCs of gout patients, which are involved in the regulation of gout inflammation through multiple pathways. hsa_circRNA_102911-hsa-miR-129-5p-DDX3X\NLRP3\NLRP9 may be the key regulatory pathway for pyroptosis to regulate gout inflammation, and hsa_circRNA_102911 may be a potential biomarker for the diagnosis of primary gout.
format Online
Article
Text
id pubmed-10122851
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Dove
record_format MEDLINE/PubMed
spelling pubmed-101228512023-04-24 Expression Profile of Pyroptosis-Related Genes and the Associated Regulatory Axis in Primary Gout Patients Niu, Shaowei Lei, Tian-Yi Dai, Fei Xie, Hongyuan Yu, Xiang Zhang, Quanbo Qing, Yufeng J Inflamm Res Original Research PURPOSE: Analyzed the expression characteristics of pyroptosis-related genes (PRGs) in peripheral blood mononuclear cells (PBMCs) of gout patients by microarray, and constructed ceRNA network to explore the molecular mechanism of RNA-mediated pyroptosis regulation. PATIENTS AND METHODS: Human mRNA, lncRNA, circRNA microarray data were used to identify differentially expressed in PBMCs from patients with primary gout and healthy controls. Differential PRGs in PBMCs of gout patients identified by Genecard database and mRNA microarray data. GO and KEGG enrichment analyses of these genes were then conducted. Protein-protein interaction networks and cytoHubba were used to identify hub genes. Combining the lncRNA and circRNA microarray data, a ceRNA network was constructed by Cytoscape to screen out key non-coding RNA molecules that can regulate target PRGs. Finally, the relative expression levels of target miRNA and circRNA in 60 gout patients and 40 healthy subjects were detected by qRT-PCR. RESULTS: The results revealed 30 differentially expressed PRGs. GO and KEGG analysis of these genes were mainly concentrated in the production and regulation of cytokines, NOD-like receptor signaling pathway and so on. Nine hub genes were screened by PPI network, including IL1B, DDX3X, NLRP3, NLRP9, AIM2, CASP8, P2XR7, CARD8 and IFI16. The has_circRNA_102906\hsa_circRNA_102910\hsa_circRNA_102911-hsa-miR-129-5p-DDX3X\NLRP3\NLRP9 regulatory network was constructed. The expression of has_circRNA_102906, hsa_circRNA_102910, hsa_circRNA_102911 were up-regulated and hsa-miR-129-5p down-regulated in PBMCs of gout patients. The relative expression of hsa_circRNA_102911 was positively correlated with clinical inflammatory indicators associated with gout, and the area under the curve of hsa_circRNA_102911 for gout diagnosis was 0.85 (95% CI: 0.775–0.925; p < 0.001). CONCLUSION: There are several differentially expressed PRGs in PBMCs of gout patients, which are involved in the regulation of gout inflammation through multiple pathways. hsa_circRNA_102911-hsa-miR-129-5p-DDX3X\NLRP3\NLRP9 may be the key regulatory pathway for pyroptosis to regulate gout inflammation, and hsa_circRNA_102911 may be a potential biomarker for the diagnosis of primary gout. Dove 2023-04-19 /pmc/articles/PMC10122851/ /pubmed/37155429 http://dx.doi.org/10.2147/JIR.S407359 Text en © 2023 Niu et al. https://creativecommons.org/licenses/by-nc/3.0/This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License (http://creativecommons.org/licenses/by-nc/3.0/ (https://creativecommons.org/licenses/by-nc/3.0/) ). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms (https://www.dovepress.com/terms.php).
spellingShingle Original Research
Niu, Shaowei
Lei, Tian-Yi
Dai, Fei
Xie, Hongyuan
Yu, Xiang
Zhang, Quanbo
Qing, Yufeng
Expression Profile of Pyroptosis-Related Genes and the Associated Regulatory Axis in Primary Gout Patients
title Expression Profile of Pyroptosis-Related Genes and the Associated Regulatory Axis in Primary Gout Patients
title_full Expression Profile of Pyroptosis-Related Genes and the Associated Regulatory Axis in Primary Gout Patients
title_fullStr Expression Profile of Pyroptosis-Related Genes and the Associated Regulatory Axis in Primary Gout Patients
title_full_unstemmed Expression Profile of Pyroptosis-Related Genes and the Associated Regulatory Axis in Primary Gout Patients
title_short Expression Profile of Pyroptosis-Related Genes and the Associated Regulatory Axis in Primary Gout Patients
title_sort expression profile of pyroptosis-related genes and the associated regulatory axis in primary gout patients
topic Original Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10122851/
https://www.ncbi.nlm.nih.gov/pubmed/37155429
http://dx.doi.org/10.2147/JIR.S407359
work_keys_str_mv AT niushaowei expressionprofileofpyroptosisrelatedgenesandtheassociatedregulatoryaxisinprimarygoutpatients
AT leitianyi expressionprofileofpyroptosisrelatedgenesandtheassociatedregulatoryaxisinprimarygoutpatients
AT daifei expressionprofileofpyroptosisrelatedgenesandtheassociatedregulatoryaxisinprimarygoutpatients
AT xiehongyuan expressionprofileofpyroptosisrelatedgenesandtheassociatedregulatoryaxisinprimarygoutpatients
AT yuxiang expressionprofileofpyroptosisrelatedgenesandtheassociatedregulatoryaxisinprimarygoutpatients
AT zhangquanbo expressionprofileofpyroptosisrelatedgenesandtheassociatedregulatoryaxisinprimarygoutpatients
AT qingyufeng expressionprofileofpyroptosisrelatedgenesandtheassociatedregulatoryaxisinprimarygoutpatients