Cargando…
Clinical evaluation of deep learning and atlas‐based auto‐segmentation for critical organs at risk in radiation therapy
INTRODUCTION: Contouring organs at risk (OARs) is a time‐intensive task that is a critical part of radiation therapy. Atlas‐based automatic segmentation has shown some success at reducing this time burden on practitioners; however, this method often requires significant manual editing to reach a cli...
Autores principales: | Gibbons, Eddie, Hoffmann, Matthew, Westhuyzen, Justin, Hodgson, Andrew, Chick, Brendan, Last, Andrew |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10122925/ https://www.ncbi.nlm.nih.gov/pubmed/36148621 http://dx.doi.org/10.1002/jmrs.618 |
Ejemplares similares
-
Evaluation of atlas-based auto-segmentation software in prostate cancer patients
por: Greenham, Stuart, et al.
Publicado: (2014) -
Comparative clinical evaluation of atlas and deep-learning-based auto-segmentation of organ structures in liver cancer
por: Ahn, Sang Hee, et al.
Publicado: (2019) -
Automatic Contour Refinement for Deep Learning Auto-segmentation of Complex Organs in MRI-guided Adaptive Radiation Therapy
por: Ding, Jie, et al.
Publicado: (2022) -
Tangential intensity modulated radiation therapy (IMRT) to the intact breast
por: Dean, Jenna, et al.
Publicado: (2016) -
The dosimetric impact of deep learning-based auto-segmentation of organs at risk on nasopharyngeal and rectal cancer
por: Guo, Hongbo, et al.
Publicado: (2021)