Cargando…

Using single cell atlas data to reconstruct regulatory networks

Inference of global gene regulatory networks from omics data is a long-term goal of systems biology. Most methods developed for inferring transcription factor (TF)–gene interactions either relied on a small dataset or used snapshot data which is not suitable for inferring a process that is inherentl...

Descripción completa

Detalles Bibliográficos
Autores principales: Song, Qi, Ruffalo, Matthew, Bar-Joseph, Ziv
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10123116/
https://www.ncbi.nlm.nih.gov/pubmed/36762475
http://dx.doi.org/10.1093/nar/gkad053
Descripción
Sumario:Inference of global gene regulatory networks from omics data is a long-term goal of systems biology. Most methods developed for inferring transcription factor (TF)–gene interactions either relied on a small dataset or used snapshot data which is not suitable for inferring a process that is inherently temporal. Here, we developed a new computational method that combines neural networks and multi-task learning to predict RNA velocity rather than gene expression values. This allows our method to overcome many of the problems faced by prior methods leading to more accurate and more comprehensive set of identified regulatory interactions. Application of our method to atlas scale single cell data from 6 HuBMAP tissues led to several validated and novel predictions and greatly improved on prior methods proposed for this task.