Cargando…

Imaging Depiction of Hypoxic Pulmonary Vasoconstriction Using Dual-Energy CT

In this article, we aim to highlight the utility of dual-energy computed tomography (DECT) in demonstrating imaging changes due to hypoxic pulmonary vasoconstriction (HPV). DECT allows detailed image reconstructions that have been shown to better characterize cardiothoracic pathologies, as compared...

Descripción completa

Detalles Bibliográficos
Autores principales: Hunter, Joshua G, Prajapati, Priyanka, Bera, Kaustav, Gupta, Aekta, Gupta, Amit
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cureus 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10123221/
https://www.ncbi.nlm.nih.gov/pubmed/37102002
http://dx.doi.org/10.7759/cureus.36551
Descripción
Sumario:In this article, we aim to highlight the utility of dual-energy computed tomography (DECT) in demonstrating imaging changes due to hypoxic pulmonary vasoconstriction (HPV). DECT allows detailed image reconstructions that have been shown to better characterize cardiothoracic pathologies, as compared to conventional CT techniques. DECT simultaneously detects two different X-ray energies, which enables generation of iodine density maps, virtual monoenergetic images, and effective atomic number maps (Z(eff)), among others. DECT has been shown to have utility in the assessment of benign versus malignant pulmonary nodules, pulmonary embolism, myocardial perfusion defects, and other conditions. Herein, we describe four cases of indeterminate pulmonary pathology when imaged with conventional CT in which subsequent use of DECT-derived image reconstructions demonstrated HPV as the underlying pathophysiological mechanism. The goal of this article is to understand the imaging appearance of HPV on DECT and discuss how HPV may mimic other causes of perfusion defects.