Cargando…

Poro-viscoelastic material parameter identification of brain tissue-mimicking hydrogels

Understanding and characterizing the mechanical and structural properties of brain tissue is essential for developing and calibrating reliable material models. Based on the Theory of Porous Media, a novel nonlinear poro-viscoelastic computational model was recently proposed to describe the mechanica...

Descripción completa

Detalles Bibliográficos
Autores principales: Kainz, Manuel P., Greiner, Alexander, Hinrichsen, Jan, Kolb, Dagmar, Comellas, Ester, Steinmann, Paul, Budday, Silvia, Terzano, Michele, Holzapfel, Gerhard A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10123293/
https://www.ncbi.nlm.nih.gov/pubmed/37101751
http://dx.doi.org/10.3389/fbioe.2023.1143304
_version_ 1785029643184635904
author Kainz, Manuel P.
Greiner, Alexander
Hinrichsen, Jan
Kolb, Dagmar
Comellas, Ester
Steinmann, Paul
Budday, Silvia
Terzano, Michele
Holzapfel, Gerhard A.
author_facet Kainz, Manuel P.
Greiner, Alexander
Hinrichsen, Jan
Kolb, Dagmar
Comellas, Ester
Steinmann, Paul
Budday, Silvia
Terzano, Michele
Holzapfel, Gerhard A.
author_sort Kainz, Manuel P.
collection PubMed
description Understanding and characterizing the mechanical and structural properties of brain tissue is essential for developing and calibrating reliable material models. Based on the Theory of Porous Media, a novel nonlinear poro-viscoelastic computational model was recently proposed to describe the mechanical response of the tissue under different loading conditions. The model contains parameters related to the time-dependent behavior arising from both the viscoelastic relaxation of the solid matrix and its interaction with the fluid phase. This study focuses on the characterization of these parameters through indentation experiments on a tailor-made polyvinyl alcohol-based hydrogel mimicking brain tissue. The material behavior is adjusted to ex vivo porcine brain tissue. An inverse parameter identification scheme using a trust region reflective algorithm is introduced and applied to match experimental data obtained from the indentation with the proposed computational model. By minimizing the error between experimental values and finite element simulation results, the optimal constitutive model parameters of the brain tissue-mimicking hydrogel are extracted. Finally, the model is validated using the derived material parameters in a finite element simulation.
format Online
Article
Text
id pubmed-10123293
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-101232932023-04-25 Poro-viscoelastic material parameter identification of brain tissue-mimicking hydrogels Kainz, Manuel P. Greiner, Alexander Hinrichsen, Jan Kolb, Dagmar Comellas, Ester Steinmann, Paul Budday, Silvia Terzano, Michele Holzapfel, Gerhard A. Front Bioeng Biotechnol Bioengineering and Biotechnology Understanding and characterizing the mechanical and structural properties of brain tissue is essential for developing and calibrating reliable material models. Based on the Theory of Porous Media, a novel nonlinear poro-viscoelastic computational model was recently proposed to describe the mechanical response of the tissue under different loading conditions. The model contains parameters related to the time-dependent behavior arising from both the viscoelastic relaxation of the solid matrix and its interaction with the fluid phase. This study focuses on the characterization of these parameters through indentation experiments on a tailor-made polyvinyl alcohol-based hydrogel mimicking brain tissue. The material behavior is adjusted to ex vivo porcine brain tissue. An inverse parameter identification scheme using a trust region reflective algorithm is introduced and applied to match experimental data obtained from the indentation with the proposed computational model. By minimizing the error between experimental values and finite element simulation results, the optimal constitutive model parameters of the brain tissue-mimicking hydrogel are extracted. Finally, the model is validated using the derived material parameters in a finite element simulation. Frontiers Media S.A. 2023-04-10 /pmc/articles/PMC10123293/ /pubmed/37101751 http://dx.doi.org/10.3389/fbioe.2023.1143304 Text en Copyright © 2023 Kainz, Greiner, Hinrichsen, Kolb, Comellas, Steinmann, Budday, Terzano and Holzapfel. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Bioengineering and Biotechnology
Kainz, Manuel P.
Greiner, Alexander
Hinrichsen, Jan
Kolb, Dagmar
Comellas, Ester
Steinmann, Paul
Budday, Silvia
Terzano, Michele
Holzapfel, Gerhard A.
Poro-viscoelastic material parameter identification of brain tissue-mimicking hydrogels
title Poro-viscoelastic material parameter identification of brain tissue-mimicking hydrogels
title_full Poro-viscoelastic material parameter identification of brain tissue-mimicking hydrogels
title_fullStr Poro-viscoelastic material parameter identification of brain tissue-mimicking hydrogels
title_full_unstemmed Poro-viscoelastic material parameter identification of brain tissue-mimicking hydrogels
title_short Poro-viscoelastic material parameter identification of brain tissue-mimicking hydrogels
title_sort poro-viscoelastic material parameter identification of brain tissue-mimicking hydrogels
topic Bioengineering and Biotechnology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10123293/
https://www.ncbi.nlm.nih.gov/pubmed/37101751
http://dx.doi.org/10.3389/fbioe.2023.1143304
work_keys_str_mv AT kainzmanuelp poroviscoelasticmaterialparameteridentificationofbraintissuemimickinghydrogels
AT greineralexander poroviscoelasticmaterialparameteridentificationofbraintissuemimickinghydrogels
AT hinrichsenjan poroviscoelasticmaterialparameteridentificationofbraintissuemimickinghydrogels
AT kolbdagmar poroviscoelasticmaterialparameteridentificationofbraintissuemimickinghydrogels
AT comellasester poroviscoelasticmaterialparameteridentificationofbraintissuemimickinghydrogels
AT steinmannpaul poroviscoelasticmaterialparameteridentificationofbraintissuemimickinghydrogels
AT buddaysilvia poroviscoelasticmaterialparameteridentificationofbraintissuemimickinghydrogels
AT terzanomichele poroviscoelasticmaterialparameteridentificationofbraintissuemimickinghydrogels
AT holzapfelgerharda poroviscoelasticmaterialparameteridentificationofbraintissuemimickinghydrogels