Cargando…

Nonlinear distance measures under the framework of Pythagorean fuzzy sets with applications in problems of pattern recognition, medical diagnosis, and COVID-19 medicine selection

BACKGROUND: The concept of Pythagorean fuzzy sets (PFSs) is an utmost valuable mathematical framework, which handles the ambiguity generally arising in decision-making problems. Three parameters, namely membership degree, non-membership degree, and indeterminate (hesitancy) degree, characterize a PF...

Descripción completa

Detalles Bibliográficos
Autores principales: Dutta, Palash, Borah, Gourangajit, Gohain, Brindaban, Chutia, Rituparna
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10123486/
https://www.ncbi.nlm.nih.gov/pubmed/37123467
http://dx.doi.org/10.1186/s43088-023-00375-8
Descripción
Sumario:BACKGROUND: The concept of Pythagorean fuzzy sets (PFSs) is an utmost valuable mathematical framework, which handles the ambiguity generally arising in decision-making problems. Three parameters, namely membership degree, non-membership degree, and indeterminate (hesitancy) degree, characterize a PFS, where the sum of the square of each of the parameters equals one. PFSs have the unique ability to handle indeterminate or inconsistent information at ease, and which demonstrates its wider scope of applicability over intuitionistic fuzzy sets. RESULTS: In the present article, we opt to define two nonlinear distances, namely generalized chordal distance and non-Archimedean chordal distance for PFSs. Most of the established measures possess linearity, and we cannot incorporate them to approximate the nonlinear nature of information as it might lead to counter-intuitive results. Moreover, the concept of non-Archimedean normed space theory plays a significant role in numerous research domains. The proficiency of our proposed measures to overcome the impediments of the existing measures is demonstrated utilizing twelve different sets of fuzzy numbers, supported by a diligent comparative analysis. Numerical examples of pattern recognition and medical diagnosis have been considered where we depict the validity and applicability of our newly constructed distances. In addition, we also demonstrate a problem of suitable medicine selection for COVID-19 so that the transmission rate of the prevailing viral pandemic could be minimized and more lives could be saved. CONCLUSIONS: Although the issues concerning the COVID-19 pandemic are very much challenging, yet it is the current need of the hour to save the human race. Furthermore, the justifiable structure of our proposed distances and also their feasible nature suggest that their applications are not only limited to some specific research domains, but decision-makers from other spheres as well shall hugely benefit from them and possibly come up with some further extensions of the ideas.