Cargando…
Prediction Framework on Early Urine Infection in IoT–Fog Environment Using XGBoost Ensemble Model
Urine infections are one of the most prevalent concerns for the healthcare industry that may impair the functioning of the kidney and other renal organs. As a result, early diagnosis and treatment of such infections are essential to avert any future complications. Conspicuously, in the current work,...
Autores principales: | Gupta, Aditya, Singh, Amritpal |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10123571/ https://www.ncbi.nlm.nih.gov/pubmed/37360131 http://dx.doi.org/10.1007/s11277-023-10466-5 |
Ejemplares similares
-
FogFrame: a framework for IoT application execution in the fog
por: Skarlat, Olena, et al.
Publicado: (2021) -
Fog for 5G and IoT
por: Chiang, Mung, et al.
Publicado: (2017) -
Fog-enabled intelligent IoT systems
por: Yang, Yang, et al.
Publicado: (2019) -
An IoT-Based Fog Computing Model
por: Ma, Kun, et al.
Publicado: (2019) -
A Deep Intelligent Attack Detection Framework for Fog-Based IoT Systems
por: Gudla, Surya Pavan Kumar, et al.
Publicado: (2022)