Cargando…
Ultrafast Image Categorization in Biology and Neural Models
Humans are able to categorize images very efficiently, in particular to detect the presence of an animal very quickly. Recently, deep learning algorithms based on convolutional neural networks (CNNs) have achieved higher than human accuracy for a wide range of visual categorization tasks. However, t...
Autores principales: | Jérémie, Jean-Nicolas, Perrinet, Laurent U. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10123664/ https://www.ncbi.nlm.nih.gov/pubmed/37092462 http://dx.doi.org/10.3390/vision7020029 |
Ejemplares similares
-
Edge co-occurrences can account for rapid categorization of natural versus animal images
por: Perrinet, Laurent U., et al.
Publicado: (2015) -
Precise Spiking Motifs in Neurobiological and Neuromorphic Data
por: Grimaldi, Antoine, et al.
Publicado: (2022) -
Anisotropic connectivity implements motion-based prediction in a spiking neural network
por: Kaplan, Bernhard A., et al.
Publicado: (2013) -
Neural Network Models of Learning and Categorization in Multigame Experiments
por: Marchiori, Davide, et al.
Publicado: (2011) -
An Adaptive Homeostatic Algorithm for the Unsupervised Learning of Visual Features
por: Perrinet, Laurent U.
Publicado: (2019)