Cargando…
Biology-Informed Recurrent Neural Network for Pandemic Prediction Using Multimodal Data
In the biomedical field, the time interval from infection to medical diagnosis is a random variable that obeys the log-normal distribution in general. Inspired by this biological law, we propose a novel back-projection infected–susceptible–infected-based long short-term memory (BPISI-LSTM) neural ne...
Autores principales: | Ding, Zhiwei, Sha, Feng, Zhang, Yi, Yang, Zhouwang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10123720/ https://www.ncbi.nlm.nih.gov/pubmed/37092410 http://dx.doi.org/10.3390/biomimetics8020158 |
Ejemplares similares
-
Data-driven prediction and control of wastewater treatment process through the combination of convolutional neural network and recurrent neural network
por: Guo, Zhiwei, et al.
Publicado: (2020) -
Multimodal Neural and Behavioral Data Predict Response to Rehabilitation in Chronic Poststroke Aphasia
por: Billot, Anne, et al.
Publicado: (2022) -
Deep Convolutional and LSTM Recurrent Neural Networks for Multimodal Wearable Activity Recognition
por: Ordóñez, Francisco Javier, et al.
Publicado: (2016) -
Dynamics and Information Import in Recurrent Neural Networks
por: Metzner, Claus, et al.
Publicado: (2022) -
Detecting Mistakes in CPR Training with Multimodal Data and Neural Networks
por: Di Mitri, Daniele, et al.
Publicado: (2019)