Cargando…
Suppressed activity of the rostral anterior cingulate cortex as a biomarker for depression remission
BACKGROUND: Suppression of the rostral anterior cingulate cortex (rACC) has shown promise as a prognostic biomarker for depression. We aimed to use machine learning to characterise its ability to predict depression remission. METHODS: Data were obtained from 81 15- to 25-year-olds with a major depre...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cambridge University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10123826/ https://www.ncbi.nlm.nih.gov/pubmed/36762975 http://dx.doi.org/10.1017/S0033291721004323 |
Sumario: | BACKGROUND: Suppression of the rostral anterior cingulate cortex (rACC) has shown promise as a prognostic biomarker for depression. We aimed to use machine learning to characterise its ability to predict depression remission. METHODS: Data were obtained from 81 15- to 25-year-olds with a major depressive disorder who had participated in the YoDA-C trial, in which they had been randomised to receive cognitive behavioural therapy plus either fluoxetine or placebo. Prior to commencing treatment patients performed a functional magnetic resonance imaging (fMRI) task to assess rACC suppression. Support vector machines were trained on the fMRI data using nested cross-validation, and were similarly trained on clinical data. We further tested our fMRI model on data from the YoDA-A trial, in which participants had completed the same fMRI paradigm. RESULTS: Thirty-six of 81 (44%) participants in the YoDA-C trial achieved remission. Our fMRI model was able to predict remission status (AUC = 0.777 [95% confidence interval (CI) 0.638–0.916], balanced accuracy = 67%, negative predictive value = 74%, p < 0.0001). Clinical models failed to predict remission status at better than chance levels. Testing the model on the alternative YoDA-A dataset confirmed its ability to predict remission (AUC = 0.776, balanced accuracy = 64%, negative predictive value = 70%, p < 0.0001). CONCLUSIONS: We confirm that rACC activity acts as a prognostic biomarker for depression. The machine learning model can identify patients who are likely to have difficult-to-treat depression, which might direct the earlier provision of enhanced support and more intensive therapies. |
---|