Cargando…
Testing domain knowledge and risk of bias of a large-scale general artificial intelligence model in mental health
BACKGROUND: With a rapidly expanding gap between the need for and availability of mental health care, artificial intelligence (AI) presents a promising, scalable solution to mental health assessment and treatment. Given the novelty and inscrutable nature of such systems, exploratory measures aimed a...
Autores principales: | Heinz, Michael V., Bhattacharya, Sukanya, Trudeau, Brianna, Quist, Rachel, Song, Seo Ho, Lee, Camilla M., Jacobson, Nicholas C. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
SAGE Publications
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10123874/ https://www.ncbi.nlm.nih.gov/pubmed/37101589 http://dx.doi.org/10.1177/20552076231170499 |
Ejemplares similares
-
Artificial Intelligence in mental health and the biases of language based models
por: Straw, Isabel, et al.
Publicado: (2020) -
Bias in artificial intelligence algorithms and recommendations for mitigation
por: Nazer, Lama H., et al.
Publicado: (2023) -
Artificial intelligence, bias and clinical safety
por: Challen, Robert, et al.
Publicado: (2019) -
Humans inherit artificial intelligence biases
por: Vicente, Lucía, et al.
Publicado: (2023) -
An intelligence in our image: the risks of bias and errors in artificial intelligence
por: Osoba, Osonde A, et al.
Publicado: (2017)