Cargando…
The application of a fully digital approach in the treatment of skeletal class III malocclusion: a preliminary study
BACKGROUND: Skeletal malocclusion patients have facial malformations and occlusal dysfunctions that require orthodontic-orthognathic joint treatment, while the combination treatment takes time and requires close communication between surgeons and orthodontists. Thus, improving the efficiency and eff...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10124042/ https://www.ncbi.nlm.nih.gov/pubmed/37095513 http://dx.doi.org/10.1186/s12903-023-02918-y |
Sumario: | BACKGROUND: Skeletal malocclusion patients have facial malformations and occlusal dysfunctions that require orthodontic-orthognathic joint treatment, while the combination treatment takes time and requires close communication between surgeons and orthodontists. Thus, improving the efficiency and effectiveness of the combination treatment is necessary, and it is still a challenge. Now, digital technology provides us with an excellent alternative. Despite the widespread use of digital technology in orthognathic surgery simulation and clear aligner orthodontic therapy, it has not been fully integrated into the combined orthognathic and orthodontic treatment process, and the components remain independent. METHODS: A fully digital approach to seamlessly integrating various parts of the combined treatment through digital technology was investigated in this study in order to achieve an efficient transition. Five patients with skeletal Class III malocclusion were enrolled, and all made fully digital treatment plans at the beginning of actual implementation, which included the design of pre-surgical orthodontic, orthognathic surgery, and post-surgical orthodontic. Then, every aspect of the clinical operation was carried out in accordance with the fully digital routine. After the entire treatment process was completed, the skeleton and dentition discrepancy between virtual planning and the actual result was evaluated. RESULTS: All participants completed the fully digital treatment process, and no complication was observed. The linear deviation of the skeletal anatomy was less than 1 mm, and the angular deviation was less than 1 degree. Except in one case in the lower dentition, the deviation of the virtual dental design from the real alignment was less than 2 mm. Furthermore, with one exception of maxillary anterior-posterior dimension, the linear deviations of the skeleton were not statistically significant. Therefore, the simulation accuracy of the fully digital approach was clinically acceptable. CONCLUSIONS: The digital treatment approach is clinically feasible and has achieved satisfactory results. The discrepancy between virtual design of the entire digital process and actual post-treatment situation was acceptable in clinic. A fully digital approach was proved effective in the treatment of skeletal Class III malocclusion, with which the efficient transition of treatment procedures was realized. |
---|