Cargando…

Distinguishing between Similar Miniproteins with Single-Molecule Nanopore Sensing: A Computational Study

[Image: see text] A nanopore is a tool in single-molecule sensing biotechnology that offers label-free identification with high throughput. Nanopores have been successfully applied to sequence DNA and show potential in the study of proteins. Nevertheless, the task remains challenging due to the larg...

Descripción completa

Detalles Bibliográficos
Autores principales: Cardoch, Sebastian, Timneanu, Nicusor, Caleman, Carl, Scheicher, Ralph H.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2021
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10125149/
https://www.ncbi.nlm.nih.gov/pubmed/37101662
http://dx.doi.org/10.1021/acsnanoscienceau.1c00022
_version_ 1785029973590933504
author Cardoch, Sebastian
Timneanu, Nicusor
Caleman, Carl
Scheicher, Ralph H.
author_facet Cardoch, Sebastian
Timneanu, Nicusor
Caleman, Carl
Scheicher, Ralph H.
author_sort Cardoch, Sebastian
collection PubMed
description [Image: see text] A nanopore is a tool in single-molecule sensing biotechnology that offers label-free identification with high throughput. Nanopores have been successfully applied to sequence DNA and show potential in the study of proteins. Nevertheless, the task remains challenging due to the large variability in size, charges, and folds of proteins. Miniproteins have a small number of residues, limited secondary structure, and stable tertiary structure, which can offer a systematic way to reduce complexity. In this computational work, we theoretically evaluated sensing two miniproteins found in the human body using a silicon nitride nanopore. We employed molecular dynamics methods to compute occupied-pore ionic current magnitudes and electronic structure calculations to obtain interaction strengths between pore wall and miniprotein. From the interaction strength, we derived dwell times using a mix of combinatorics and numerical solutions. This latter approach circumvents typical computational demands needed to simulate translocation events using molecular dynamics. We focused on two miniproteins potentially difficult to distinguish owing to their isotropic geometry, similar number of residues, and overall comparable structure. We found that the occupied-pore current magnitudes not to vary significantly, but their dwell times differ by 1 order of magnitude. Together, these results suggest a successful identification protocol for similar miniproteins.
format Online
Article
Text
id pubmed-10125149
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-101251492023-04-25 Distinguishing between Similar Miniproteins with Single-Molecule Nanopore Sensing: A Computational Study Cardoch, Sebastian Timneanu, Nicusor Caleman, Carl Scheicher, Ralph H. ACS Nanosci Au [Image: see text] A nanopore is a tool in single-molecule sensing biotechnology that offers label-free identification with high throughput. Nanopores have been successfully applied to sequence DNA and show potential in the study of proteins. Nevertheless, the task remains challenging due to the large variability in size, charges, and folds of proteins. Miniproteins have a small number of residues, limited secondary structure, and stable tertiary structure, which can offer a systematic way to reduce complexity. In this computational work, we theoretically evaluated sensing two miniproteins found in the human body using a silicon nitride nanopore. We employed molecular dynamics methods to compute occupied-pore ionic current magnitudes and electronic structure calculations to obtain interaction strengths between pore wall and miniprotein. From the interaction strength, we derived dwell times using a mix of combinatorics and numerical solutions. This latter approach circumvents typical computational demands needed to simulate translocation events using molecular dynamics. We focused on two miniproteins potentially difficult to distinguish owing to their isotropic geometry, similar number of residues, and overall comparable structure. We found that the occupied-pore current magnitudes not to vary significantly, but their dwell times differ by 1 order of magnitude. Together, these results suggest a successful identification protocol for similar miniproteins. American Chemical Society 2021-12-28 /pmc/articles/PMC10125149/ /pubmed/37101662 http://dx.doi.org/10.1021/acsnanoscienceau.1c00022 Text en © 2021 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by/4.0/Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Cardoch, Sebastian
Timneanu, Nicusor
Caleman, Carl
Scheicher, Ralph H.
Distinguishing between Similar Miniproteins with Single-Molecule Nanopore Sensing: A Computational Study
title Distinguishing between Similar Miniproteins with Single-Molecule Nanopore Sensing: A Computational Study
title_full Distinguishing between Similar Miniproteins with Single-Molecule Nanopore Sensing: A Computational Study
title_fullStr Distinguishing between Similar Miniproteins with Single-Molecule Nanopore Sensing: A Computational Study
title_full_unstemmed Distinguishing between Similar Miniproteins with Single-Molecule Nanopore Sensing: A Computational Study
title_short Distinguishing between Similar Miniproteins with Single-Molecule Nanopore Sensing: A Computational Study
title_sort distinguishing between similar miniproteins with single-molecule nanopore sensing: a computational study
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10125149/
https://www.ncbi.nlm.nih.gov/pubmed/37101662
http://dx.doi.org/10.1021/acsnanoscienceau.1c00022
work_keys_str_mv AT cardochsebastian distinguishingbetweensimilarminiproteinswithsinglemoleculenanoporesensingacomputationalstudy
AT timneanunicusor distinguishingbetweensimilarminiproteinswithsinglemoleculenanoporesensingacomputationalstudy
AT calemancarl distinguishingbetweensimilarminiproteinswithsinglemoleculenanoporesensingacomputationalstudy
AT scheicherralphh distinguishingbetweensimilarminiproteinswithsinglemoleculenanoporesensingacomputationalstudy