Cargando…
A streamlined, machine learning-derived approach to risk-stratification in heart failure patients with secondary tricuspid regurgitation
AIMS: Secondary tricuspid regurgitation (sTR) is the most frequent valvular heart disease and has a significant impact on mortality. A high burden of comorbidities often worsens the already dismal prognosis of sTR, while tricuspid interventions remain underused and initiated too late. The aim was to...
Autores principales: | , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10125224/ https://www.ncbi.nlm.nih.gov/pubmed/36757905 http://dx.doi.org/10.1093/ehjci/jead009 |
_version_ | 1785029989012340736 |
---|---|
author | Heitzinger, Gregor Spinka, Georg Koschatko, Sophia Baumgartner, Clemens Dannenberg, Varius Halavina, Kseniya Mascherbauer, Katharina Nitsche, Christian Dona, Caroliná Koschutnik, Matthias Kammerlander, Andreas Winter, Max-Paul Strunk, Guido Pavo, Noemi Kastl, Stefan Hülsmann, Martin Rosenhek, Raphael Hengstenberg, Christian Bartko, Philipp E Goliasch, Georg |
author_facet | Heitzinger, Gregor Spinka, Georg Koschatko, Sophia Baumgartner, Clemens Dannenberg, Varius Halavina, Kseniya Mascherbauer, Katharina Nitsche, Christian Dona, Caroliná Koschutnik, Matthias Kammerlander, Andreas Winter, Max-Paul Strunk, Guido Pavo, Noemi Kastl, Stefan Hülsmann, Martin Rosenhek, Raphael Hengstenberg, Christian Bartko, Philipp E Goliasch, Georg |
author_sort | Heitzinger, Gregor |
collection | PubMed |
description | AIMS: Secondary tricuspid regurgitation (sTR) is the most frequent valvular heart disease and has a significant impact on mortality. A high burden of comorbidities often worsens the already dismal prognosis of sTR, while tricuspid interventions remain underused and initiated too late. The aim was to examine the most powerful predictors of all-cause mortality in moderate and severe sTR using machine learning techniques and to provide a streamlined approach to risk-stratification using readily available clinical, echocardiographic and laboratory parameters. METHODS AND RESULTS: This large-scale, long-term observational study included 3359 moderate and 1509 severe sTR patients encompassing the entire heart failure spectrum (preserved, mid-range and reduced ejection fraction). A random survival forest was applied to investigate the most important predictors and group patients according to their number of adverse features. The identified predictors and thresholds, that were associated with significantly worse mortality were lower glomerular filtration rate (<60 mL/min/1.73m(2)), higher NT-proBNP, increased high sensitivity C-reactive protein, serum albumin < 40 g/L and hemoglobin < 13 g/dL. Additionally, grouping patients according to the number of adverse features yielded important prognostic information, as patients with 4 or 5 adverse features had a fourfold risk increase in moderate sTR [4.81(3.56–6.50) HR 95%CI, P < 0.001] and fivefold risk increase in severe sTR [5.33 (3.28–8.66) HR 95%CI, P < 0.001]. CONCLUSION: This study presents a streamlined, machine learning-derived and internally validated approach to risk-stratification in patients with moderate and severe sTR, that adds important prognostic information to aid clinical-decision-making. |
format | Online Article Text |
id | pubmed-10125224 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-101252242023-04-25 A streamlined, machine learning-derived approach to risk-stratification in heart failure patients with secondary tricuspid regurgitation Heitzinger, Gregor Spinka, Georg Koschatko, Sophia Baumgartner, Clemens Dannenberg, Varius Halavina, Kseniya Mascherbauer, Katharina Nitsche, Christian Dona, Caroliná Koschutnik, Matthias Kammerlander, Andreas Winter, Max-Paul Strunk, Guido Pavo, Noemi Kastl, Stefan Hülsmann, Martin Rosenhek, Raphael Hengstenberg, Christian Bartko, Philipp E Goliasch, Georg Eur Heart J Cardiovasc Imaging Original Paper AIMS: Secondary tricuspid regurgitation (sTR) is the most frequent valvular heart disease and has a significant impact on mortality. A high burden of comorbidities often worsens the already dismal prognosis of sTR, while tricuspid interventions remain underused and initiated too late. The aim was to examine the most powerful predictors of all-cause mortality in moderate and severe sTR using machine learning techniques and to provide a streamlined approach to risk-stratification using readily available clinical, echocardiographic and laboratory parameters. METHODS AND RESULTS: This large-scale, long-term observational study included 3359 moderate and 1509 severe sTR patients encompassing the entire heart failure spectrum (preserved, mid-range and reduced ejection fraction). A random survival forest was applied to investigate the most important predictors and group patients according to their number of adverse features. The identified predictors and thresholds, that were associated with significantly worse mortality were lower glomerular filtration rate (<60 mL/min/1.73m(2)), higher NT-proBNP, increased high sensitivity C-reactive protein, serum albumin < 40 g/L and hemoglobin < 13 g/dL. Additionally, grouping patients according to the number of adverse features yielded important prognostic information, as patients with 4 or 5 adverse features had a fourfold risk increase in moderate sTR [4.81(3.56–6.50) HR 95%CI, P < 0.001] and fivefold risk increase in severe sTR [5.33 (3.28–8.66) HR 95%CI, P < 0.001]. CONCLUSION: This study presents a streamlined, machine learning-derived and internally validated approach to risk-stratification in patients with moderate and severe sTR, that adds important prognostic information to aid clinical-decision-making. Oxford University Press 2023-02-10 /pmc/articles/PMC10125224/ /pubmed/36757905 http://dx.doi.org/10.1093/ehjci/jead009 Text en © The Author(s) 2023. Published by Oxford University Press on behalf of the European Society of Cardiology. https://creativecommons.org/licenses/by/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Original Paper Heitzinger, Gregor Spinka, Georg Koschatko, Sophia Baumgartner, Clemens Dannenberg, Varius Halavina, Kseniya Mascherbauer, Katharina Nitsche, Christian Dona, Caroliná Koschutnik, Matthias Kammerlander, Andreas Winter, Max-Paul Strunk, Guido Pavo, Noemi Kastl, Stefan Hülsmann, Martin Rosenhek, Raphael Hengstenberg, Christian Bartko, Philipp E Goliasch, Georg A streamlined, machine learning-derived approach to risk-stratification in heart failure patients with secondary tricuspid regurgitation |
title | A streamlined, machine learning-derived approach to risk-stratification in heart failure patients with secondary tricuspid regurgitation |
title_full | A streamlined, machine learning-derived approach to risk-stratification in heart failure patients with secondary tricuspid regurgitation |
title_fullStr | A streamlined, machine learning-derived approach to risk-stratification in heart failure patients with secondary tricuspid regurgitation |
title_full_unstemmed | A streamlined, machine learning-derived approach to risk-stratification in heart failure patients with secondary tricuspid regurgitation |
title_short | A streamlined, machine learning-derived approach to risk-stratification in heart failure patients with secondary tricuspid regurgitation |
title_sort | streamlined, machine learning-derived approach to risk-stratification in heart failure patients with secondary tricuspid regurgitation |
topic | Original Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10125224/ https://www.ncbi.nlm.nih.gov/pubmed/36757905 http://dx.doi.org/10.1093/ehjci/jead009 |
work_keys_str_mv | AT heitzingergregor astreamlinedmachinelearningderivedapproachtoriskstratificationinheartfailurepatientswithsecondarytricuspidregurgitation AT spinkageorg astreamlinedmachinelearningderivedapproachtoriskstratificationinheartfailurepatientswithsecondarytricuspidregurgitation AT koschatkosophia astreamlinedmachinelearningderivedapproachtoriskstratificationinheartfailurepatientswithsecondarytricuspidregurgitation AT baumgartnerclemens astreamlinedmachinelearningderivedapproachtoriskstratificationinheartfailurepatientswithsecondarytricuspidregurgitation AT dannenbergvarius astreamlinedmachinelearningderivedapproachtoriskstratificationinheartfailurepatientswithsecondarytricuspidregurgitation AT halavinakseniya astreamlinedmachinelearningderivedapproachtoriskstratificationinheartfailurepatientswithsecondarytricuspidregurgitation AT mascherbauerkatharina astreamlinedmachinelearningderivedapproachtoriskstratificationinheartfailurepatientswithsecondarytricuspidregurgitation AT nitschechristian astreamlinedmachinelearningderivedapproachtoriskstratificationinheartfailurepatientswithsecondarytricuspidregurgitation AT donacarolina astreamlinedmachinelearningderivedapproachtoriskstratificationinheartfailurepatientswithsecondarytricuspidregurgitation AT koschutnikmatthias astreamlinedmachinelearningderivedapproachtoriskstratificationinheartfailurepatientswithsecondarytricuspidregurgitation AT kammerlanderandreas astreamlinedmachinelearningderivedapproachtoriskstratificationinheartfailurepatientswithsecondarytricuspidregurgitation AT wintermaxpaul astreamlinedmachinelearningderivedapproachtoriskstratificationinheartfailurepatientswithsecondarytricuspidregurgitation AT strunkguido astreamlinedmachinelearningderivedapproachtoriskstratificationinheartfailurepatientswithsecondarytricuspidregurgitation AT pavonoemi astreamlinedmachinelearningderivedapproachtoriskstratificationinheartfailurepatientswithsecondarytricuspidregurgitation AT kastlstefan astreamlinedmachinelearningderivedapproachtoriskstratificationinheartfailurepatientswithsecondarytricuspidregurgitation AT hulsmannmartin astreamlinedmachinelearningderivedapproachtoriskstratificationinheartfailurepatientswithsecondarytricuspidregurgitation AT rosenhekraphael astreamlinedmachinelearningderivedapproachtoriskstratificationinheartfailurepatientswithsecondarytricuspidregurgitation AT hengstenbergchristian astreamlinedmachinelearningderivedapproachtoriskstratificationinheartfailurepatientswithsecondarytricuspidregurgitation AT bartkophilippe astreamlinedmachinelearningderivedapproachtoriskstratificationinheartfailurepatientswithsecondarytricuspidregurgitation AT goliaschgeorg astreamlinedmachinelearningderivedapproachtoriskstratificationinheartfailurepatientswithsecondarytricuspidregurgitation AT heitzingergregor streamlinedmachinelearningderivedapproachtoriskstratificationinheartfailurepatientswithsecondarytricuspidregurgitation AT spinkageorg streamlinedmachinelearningderivedapproachtoriskstratificationinheartfailurepatientswithsecondarytricuspidregurgitation AT koschatkosophia streamlinedmachinelearningderivedapproachtoriskstratificationinheartfailurepatientswithsecondarytricuspidregurgitation AT baumgartnerclemens streamlinedmachinelearningderivedapproachtoriskstratificationinheartfailurepatientswithsecondarytricuspidregurgitation AT dannenbergvarius streamlinedmachinelearningderivedapproachtoriskstratificationinheartfailurepatientswithsecondarytricuspidregurgitation AT halavinakseniya streamlinedmachinelearningderivedapproachtoriskstratificationinheartfailurepatientswithsecondarytricuspidregurgitation AT mascherbauerkatharina streamlinedmachinelearningderivedapproachtoriskstratificationinheartfailurepatientswithsecondarytricuspidregurgitation AT nitschechristian streamlinedmachinelearningderivedapproachtoriskstratificationinheartfailurepatientswithsecondarytricuspidregurgitation AT donacarolina streamlinedmachinelearningderivedapproachtoriskstratificationinheartfailurepatientswithsecondarytricuspidregurgitation AT koschutnikmatthias streamlinedmachinelearningderivedapproachtoriskstratificationinheartfailurepatientswithsecondarytricuspidregurgitation AT kammerlanderandreas streamlinedmachinelearningderivedapproachtoriskstratificationinheartfailurepatientswithsecondarytricuspidregurgitation AT wintermaxpaul streamlinedmachinelearningderivedapproachtoriskstratificationinheartfailurepatientswithsecondarytricuspidregurgitation AT strunkguido streamlinedmachinelearningderivedapproachtoriskstratificationinheartfailurepatientswithsecondarytricuspidregurgitation AT pavonoemi streamlinedmachinelearningderivedapproachtoriskstratificationinheartfailurepatientswithsecondarytricuspidregurgitation AT kastlstefan streamlinedmachinelearningderivedapproachtoriskstratificationinheartfailurepatientswithsecondarytricuspidregurgitation AT hulsmannmartin streamlinedmachinelearningderivedapproachtoriskstratificationinheartfailurepatientswithsecondarytricuspidregurgitation AT rosenhekraphael streamlinedmachinelearningderivedapproachtoriskstratificationinheartfailurepatientswithsecondarytricuspidregurgitation AT hengstenbergchristian streamlinedmachinelearningderivedapproachtoriskstratificationinheartfailurepatientswithsecondarytricuspidregurgitation AT bartkophilippe streamlinedmachinelearningderivedapproachtoriskstratificationinheartfailurepatientswithsecondarytricuspidregurgitation AT goliaschgeorg streamlinedmachinelearningderivedapproachtoriskstratificationinheartfailurepatientswithsecondarytricuspidregurgitation |