Cargando…

A streamlined, machine learning-derived approach to risk-stratification in heart failure patients with secondary tricuspid regurgitation

AIMS: Secondary tricuspid regurgitation (sTR) is the most frequent valvular heart disease and has a significant impact on mortality. A high burden of comorbidities often worsens the already dismal prognosis of sTR, while tricuspid interventions remain underused and initiated too late. The aim was to...

Descripción completa

Detalles Bibliográficos
Autores principales: Heitzinger, Gregor, Spinka, Georg, Koschatko, Sophia, Baumgartner, Clemens, Dannenberg, Varius, Halavina, Kseniya, Mascherbauer, Katharina, Nitsche, Christian, Dona, Caroliná, Koschutnik, Matthias, Kammerlander, Andreas, Winter, Max-Paul, Strunk, Guido, Pavo, Noemi, Kastl, Stefan, Hülsmann, Martin, Rosenhek, Raphael, Hengstenberg, Christian, Bartko, Philipp E, Goliasch, Georg
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10125224/
https://www.ncbi.nlm.nih.gov/pubmed/36757905
http://dx.doi.org/10.1093/ehjci/jead009
_version_ 1785029989012340736
author Heitzinger, Gregor
Spinka, Georg
Koschatko, Sophia
Baumgartner, Clemens
Dannenberg, Varius
Halavina, Kseniya
Mascherbauer, Katharina
Nitsche, Christian
Dona, Caroliná
Koschutnik, Matthias
Kammerlander, Andreas
Winter, Max-Paul
Strunk, Guido
Pavo, Noemi
Kastl, Stefan
Hülsmann, Martin
Rosenhek, Raphael
Hengstenberg, Christian
Bartko, Philipp E
Goliasch, Georg
author_facet Heitzinger, Gregor
Spinka, Georg
Koschatko, Sophia
Baumgartner, Clemens
Dannenberg, Varius
Halavina, Kseniya
Mascherbauer, Katharina
Nitsche, Christian
Dona, Caroliná
Koschutnik, Matthias
Kammerlander, Andreas
Winter, Max-Paul
Strunk, Guido
Pavo, Noemi
Kastl, Stefan
Hülsmann, Martin
Rosenhek, Raphael
Hengstenberg, Christian
Bartko, Philipp E
Goliasch, Georg
author_sort Heitzinger, Gregor
collection PubMed
description AIMS: Secondary tricuspid regurgitation (sTR) is the most frequent valvular heart disease and has a significant impact on mortality. A high burden of comorbidities often worsens the already dismal prognosis of sTR, while tricuspid interventions remain underused and initiated too late. The aim was to examine the most powerful predictors of all-cause mortality in moderate and severe sTR using machine learning techniques and to provide a streamlined approach to risk-stratification using readily available clinical, echocardiographic and laboratory parameters. METHODS AND RESULTS: This large-scale, long-term observational study included 3359 moderate and 1509 severe sTR patients encompassing the entire heart failure spectrum (preserved, mid-range and reduced ejection fraction). A random survival forest was applied to investigate the most important predictors and group patients according to their number of adverse features. The identified predictors and thresholds, that were associated with significantly worse mortality were lower glomerular filtration rate (<60 mL/min/1.73m(2)), higher NT-proBNP, increased high sensitivity C-reactive protein, serum albumin < 40 g/L and hemoglobin < 13 g/dL. Additionally, grouping patients according to the number of adverse features yielded important prognostic information, as patients with 4 or 5 adverse features had a fourfold risk increase in moderate sTR [4.81(3.56–6.50) HR 95%CI, P < 0.001] and fivefold risk increase in severe sTR [5.33 (3.28–8.66) HR 95%CI, P < 0.001]. CONCLUSION: This study presents a streamlined, machine learning-derived and internally validated approach to risk-stratification in patients with moderate and severe sTR, that adds important prognostic information to aid clinical-decision-making.
format Online
Article
Text
id pubmed-10125224
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-101252242023-04-25 A streamlined, machine learning-derived approach to risk-stratification in heart failure patients with secondary tricuspid regurgitation Heitzinger, Gregor Spinka, Georg Koschatko, Sophia Baumgartner, Clemens Dannenberg, Varius Halavina, Kseniya Mascherbauer, Katharina Nitsche, Christian Dona, Caroliná Koschutnik, Matthias Kammerlander, Andreas Winter, Max-Paul Strunk, Guido Pavo, Noemi Kastl, Stefan Hülsmann, Martin Rosenhek, Raphael Hengstenberg, Christian Bartko, Philipp E Goliasch, Georg Eur Heart J Cardiovasc Imaging Original Paper AIMS: Secondary tricuspid regurgitation (sTR) is the most frequent valvular heart disease and has a significant impact on mortality. A high burden of comorbidities often worsens the already dismal prognosis of sTR, while tricuspid interventions remain underused and initiated too late. The aim was to examine the most powerful predictors of all-cause mortality in moderate and severe sTR using machine learning techniques and to provide a streamlined approach to risk-stratification using readily available clinical, echocardiographic and laboratory parameters. METHODS AND RESULTS: This large-scale, long-term observational study included 3359 moderate and 1509 severe sTR patients encompassing the entire heart failure spectrum (preserved, mid-range and reduced ejection fraction). A random survival forest was applied to investigate the most important predictors and group patients according to their number of adverse features. The identified predictors and thresholds, that were associated with significantly worse mortality were lower glomerular filtration rate (<60 mL/min/1.73m(2)), higher NT-proBNP, increased high sensitivity C-reactive protein, serum albumin < 40 g/L and hemoglobin < 13 g/dL. Additionally, grouping patients according to the number of adverse features yielded important prognostic information, as patients with 4 or 5 adverse features had a fourfold risk increase in moderate sTR [4.81(3.56–6.50) HR 95%CI, P < 0.001] and fivefold risk increase in severe sTR [5.33 (3.28–8.66) HR 95%CI, P < 0.001]. CONCLUSION: This study presents a streamlined, machine learning-derived and internally validated approach to risk-stratification in patients with moderate and severe sTR, that adds important prognostic information to aid clinical-decision-making. Oxford University Press 2023-02-10 /pmc/articles/PMC10125224/ /pubmed/36757905 http://dx.doi.org/10.1093/ehjci/jead009 Text en © The Author(s) 2023. Published by Oxford University Press on behalf of the European Society of Cardiology. https://creativecommons.org/licenses/by/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Original Paper
Heitzinger, Gregor
Spinka, Georg
Koschatko, Sophia
Baumgartner, Clemens
Dannenberg, Varius
Halavina, Kseniya
Mascherbauer, Katharina
Nitsche, Christian
Dona, Caroliná
Koschutnik, Matthias
Kammerlander, Andreas
Winter, Max-Paul
Strunk, Guido
Pavo, Noemi
Kastl, Stefan
Hülsmann, Martin
Rosenhek, Raphael
Hengstenberg, Christian
Bartko, Philipp E
Goliasch, Georg
A streamlined, machine learning-derived approach to risk-stratification in heart failure patients with secondary tricuspid regurgitation
title A streamlined, machine learning-derived approach to risk-stratification in heart failure patients with secondary tricuspid regurgitation
title_full A streamlined, machine learning-derived approach to risk-stratification in heart failure patients with secondary tricuspid regurgitation
title_fullStr A streamlined, machine learning-derived approach to risk-stratification in heart failure patients with secondary tricuspid regurgitation
title_full_unstemmed A streamlined, machine learning-derived approach to risk-stratification in heart failure patients with secondary tricuspid regurgitation
title_short A streamlined, machine learning-derived approach to risk-stratification in heart failure patients with secondary tricuspid regurgitation
title_sort streamlined, machine learning-derived approach to risk-stratification in heart failure patients with secondary tricuspid regurgitation
topic Original Paper
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10125224/
https://www.ncbi.nlm.nih.gov/pubmed/36757905
http://dx.doi.org/10.1093/ehjci/jead009
work_keys_str_mv AT heitzingergregor astreamlinedmachinelearningderivedapproachtoriskstratificationinheartfailurepatientswithsecondarytricuspidregurgitation
AT spinkageorg astreamlinedmachinelearningderivedapproachtoriskstratificationinheartfailurepatientswithsecondarytricuspidregurgitation
AT koschatkosophia astreamlinedmachinelearningderivedapproachtoriskstratificationinheartfailurepatientswithsecondarytricuspidregurgitation
AT baumgartnerclemens astreamlinedmachinelearningderivedapproachtoriskstratificationinheartfailurepatientswithsecondarytricuspidregurgitation
AT dannenbergvarius astreamlinedmachinelearningderivedapproachtoriskstratificationinheartfailurepatientswithsecondarytricuspidregurgitation
AT halavinakseniya astreamlinedmachinelearningderivedapproachtoriskstratificationinheartfailurepatientswithsecondarytricuspidregurgitation
AT mascherbauerkatharina astreamlinedmachinelearningderivedapproachtoriskstratificationinheartfailurepatientswithsecondarytricuspidregurgitation
AT nitschechristian astreamlinedmachinelearningderivedapproachtoriskstratificationinheartfailurepatientswithsecondarytricuspidregurgitation
AT donacarolina astreamlinedmachinelearningderivedapproachtoriskstratificationinheartfailurepatientswithsecondarytricuspidregurgitation
AT koschutnikmatthias astreamlinedmachinelearningderivedapproachtoriskstratificationinheartfailurepatientswithsecondarytricuspidregurgitation
AT kammerlanderandreas astreamlinedmachinelearningderivedapproachtoriskstratificationinheartfailurepatientswithsecondarytricuspidregurgitation
AT wintermaxpaul astreamlinedmachinelearningderivedapproachtoriskstratificationinheartfailurepatientswithsecondarytricuspidregurgitation
AT strunkguido astreamlinedmachinelearningderivedapproachtoriskstratificationinheartfailurepatientswithsecondarytricuspidregurgitation
AT pavonoemi astreamlinedmachinelearningderivedapproachtoriskstratificationinheartfailurepatientswithsecondarytricuspidregurgitation
AT kastlstefan astreamlinedmachinelearningderivedapproachtoriskstratificationinheartfailurepatientswithsecondarytricuspidregurgitation
AT hulsmannmartin astreamlinedmachinelearningderivedapproachtoriskstratificationinheartfailurepatientswithsecondarytricuspidregurgitation
AT rosenhekraphael astreamlinedmachinelearningderivedapproachtoriskstratificationinheartfailurepatientswithsecondarytricuspidregurgitation
AT hengstenbergchristian astreamlinedmachinelearningderivedapproachtoriskstratificationinheartfailurepatientswithsecondarytricuspidregurgitation
AT bartkophilippe astreamlinedmachinelearningderivedapproachtoriskstratificationinheartfailurepatientswithsecondarytricuspidregurgitation
AT goliaschgeorg astreamlinedmachinelearningderivedapproachtoriskstratificationinheartfailurepatientswithsecondarytricuspidregurgitation
AT heitzingergregor streamlinedmachinelearningderivedapproachtoriskstratificationinheartfailurepatientswithsecondarytricuspidregurgitation
AT spinkageorg streamlinedmachinelearningderivedapproachtoriskstratificationinheartfailurepatientswithsecondarytricuspidregurgitation
AT koschatkosophia streamlinedmachinelearningderivedapproachtoriskstratificationinheartfailurepatientswithsecondarytricuspidregurgitation
AT baumgartnerclemens streamlinedmachinelearningderivedapproachtoriskstratificationinheartfailurepatientswithsecondarytricuspidregurgitation
AT dannenbergvarius streamlinedmachinelearningderivedapproachtoriskstratificationinheartfailurepatientswithsecondarytricuspidregurgitation
AT halavinakseniya streamlinedmachinelearningderivedapproachtoriskstratificationinheartfailurepatientswithsecondarytricuspidregurgitation
AT mascherbauerkatharina streamlinedmachinelearningderivedapproachtoriskstratificationinheartfailurepatientswithsecondarytricuspidregurgitation
AT nitschechristian streamlinedmachinelearningderivedapproachtoriskstratificationinheartfailurepatientswithsecondarytricuspidregurgitation
AT donacarolina streamlinedmachinelearningderivedapproachtoriskstratificationinheartfailurepatientswithsecondarytricuspidregurgitation
AT koschutnikmatthias streamlinedmachinelearningderivedapproachtoriskstratificationinheartfailurepatientswithsecondarytricuspidregurgitation
AT kammerlanderandreas streamlinedmachinelearningderivedapproachtoriskstratificationinheartfailurepatientswithsecondarytricuspidregurgitation
AT wintermaxpaul streamlinedmachinelearningderivedapproachtoriskstratificationinheartfailurepatientswithsecondarytricuspidregurgitation
AT strunkguido streamlinedmachinelearningderivedapproachtoriskstratificationinheartfailurepatientswithsecondarytricuspidregurgitation
AT pavonoemi streamlinedmachinelearningderivedapproachtoriskstratificationinheartfailurepatientswithsecondarytricuspidregurgitation
AT kastlstefan streamlinedmachinelearningderivedapproachtoriskstratificationinheartfailurepatientswithsecondarytricuspidregurgitation
AT hulsmannmartin streamlinedmachinelearningderivedapproachtoriskstratificationinheartfailurepatientswithsecondarytricuspidregurgitation
AT rosenhekraphael streamlinedmachinelearningderivedapproachtoriskstratificationinheartfailurepatientswithsecondarytricuspidregurgitation
AT hengstenbergchristian streamlinedmachinelearningderivedapproachtoriskstratificationinheartfailurepatientswithsecondarytricuspidregurgitation
AT bartkophilippe streamlinedmachinelearningderivedapproachtoriskstratificationinheartfailurepatientswithsecondarytricuspidregurgitation
AT goliaschgeorg streamlinedmachinelearningderivedapproachtoriskstratificationinheartfailurepatientswithsecondarytricuspidregurgitation