Cargando…
Discovery of a New Chemoeffector for Escherichia coli Chemoreceptor Tsr and Identification of a Molecular Mechanism of Repellent Sensing
[Image: see text] Motile bacteria use chemotaxis to search for nutrients and escape from harmful chemicals. While the sensing mechanisms for chemical attractants are well established, the molecular details of chemorepellent detection are poorly understood. Here, by using combined computational and e...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2022
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10125284/ https://www.ncbi.nlm.nih.gov/pubmed/37102165 http://dx.doi.org/10.1021/acsbiomedchemau.1c00055 |
_version_ | 1785029998241906688 |
---|---|
author | Chen, Xi Bi, Shuangyu Ma, Xiaomin Sourjik, Victor Lai, Luhua |
author_facet | Chen, Xi Bi, Shuangyu Ma, Xiaomin Sourjik, Victor Lai, Luhua |
author_sort | Chen, Xi |
collection | PubMed |
description | [Image: see text] Motile bacteria use chemotaxis to search for nutrients and escape from harmful chemicals. While the sensing mechanisms for chemical attractants are well established, the molecular details of chemorepellent detection are poorly understood. Here, by using combined computational and experimental approaches to screen potential chemoeffectors for the Escherichia coli chemoreceptor Tsr, we identified a specific chemorepellent, 1-aminocyclohexanecarboxylic acid (ACHC). Our study strongly suggests that ACHC directly binds to the periplasmic sensory domain of Tsr and competes with l-serine, the amino acid attractant of Tsr. We further characterized the binding features of l-serine, ACHC, and l-leucine (a natural repellent that binds Tsr) and found that Asn68 plays a key role in mediating chemotactic response. Mutating Asn68 to Ala inverted the response to l-leucine from a repellent to an attractant. Our study provides important insights into the molecular mechanisms of ligand sensing via bacterial chemoreceptors. |
format | Online Article Text |
id | pubmed-10125284 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | American Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-101252842023-04-25 Discovery of a New Chemoeffector for Escherichia coli Chemoreceptor Tsr and Identification of a Molecular Mechanism of Repellent Sensing Chen, Xi Bi, Shuangyu Ma, Xiaomin Sourjik, Victor Lai, Luhua ACS Bio Med Chem Au [Image: see text] Motile bacteria use chemotaxis to search for nutrients and escape from harmful chemicals. While the sensing mechanisms for chemical attractants are well established, the molecular details of chemorepellent detection are poorly understood. Here, by using combined computational and experimental approaches to screen potential chemoeffectors for the Escherichia coli chemoreceptor Tsr, we identified a specific chemorepellent, 1-aminocyclohexanecarboxylic acid (ACHC). Our study strongly suggests that ACHC directly binds to the periplasmic sensory domain of Tsr and competes with l-serine, the amino acid attractant of Tsr. We further characterized the binding features of l-serine, ACHC, and l-leucine (a natural repellent that binds Tsr) and found that Asn68 plays a key role in mediating chemotactic response. Mutating Asn68 to Ala inverted the response to l-leucine from a repellent to an attractant. Our study provides important insights into the molecular mechanisms of ligand sensing via bacterial chemoreceptors. American Chemical Society 2022-03-18 /pmc/articles/PMC10125284/ /pubmed/37102165 http://dx.doi.org/10.1021/acsbiomedchemau.1c00055 Text en © 2022 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by-nc-nd/4.0/Permits non-commercial access and re-use, provided that author attribution and integrity are maintained; but does not permit creation of adaptations or other derivative works (https://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Chen, Xi Bi, Shuangyu Ma, Xiaomin Sourjik, Victor Lai, Luhua Discovery of a New Chemoeffector for Escherichia coli Chemoreceptor Tsr and Identification of a Molecular Mechanism of Repellent Sensing |
title | Discovery of a New Chemoeffector for Escherichia coli Chemoreceptor Tsr and Identification
of a Molecular Mechanism of Repellent Sensing |
title_full | Discovery of a New Chemoeffector for Escherichia coli Chemoreceptor Tsr and Identification
of a Molecular Mechanism of Repellent Sensing |
title_fullStr | Discovery of a New Chemoeffector for Escherichia coli Chemoreceptor Tsr and Identification
of a Molecular Mechanism of Repellent Sensing |
title_full_unstemmed | Discovery of a New Chemoeffector for Escherichia coli Chemoreceptor Tsr and Identification
of a Molecular Mechanism of Repellent Sensing |
title_short | Discovery of a New Chemoeffector for Escherichia coli Chemoreceptor Tsr and Identification
of a Molecular Mechanism of Repellent Sensing |
title_sort | discovery of a new chemoeffector for escherichia coli chemoreceptor tsr and identification
of a molecular mechanism of repellent sensing |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10125284/ https://www.ncbi.nlm.nih.gov/pubmed/37102165 http://dx.doi.org/10.1021/acsbiomedchemau.1c00055 |
work_keys_str_mv | AT chenxi discoveryofanewchemoeffectorforescherichiacolichemoreceptortsrandidentificationofamolecularmechanismofrepellentsensing AT bishuangyu discoveryofanewchemoeffectorforescherichiacolichemoreceptortsrandidentificationofamolecularmechanismofrepellentsensing AT maxiaomin discoveryofanewchemoeffectorforescherichiacolichemoreceptortsrandidentificationofamolecularmechanismofrepellentsensing AT sourjikvictor discoveryofanewchemoeffectorforescherichiacolichemoreceptortsrandidentificationofamolecularmechanismofrepellentsensing AT lailuhua discoveryofanewchemoeffectorforescherichiacolichemoreceptortsrandidentificationofamolecularmechanismofrepellentsensing |