Cargando…

Comprehensive Multi-compartment Sampling for Quantification of Long-Term Accumulation of PAHs in Soils

[Image: see text] Long-term accumulation in the soils of ubiquitous organic pollutants such as many polycyclic aromatic hydrocarbons (PAHs) depends on deposition from the atmosphere, revolatilization, leaching, and degradation processes such as photolysis and biodegradation. Quantifying the phase di...

Descripción completa

Detalles Bibliográficos
Autores principales: Meierdierks, Jana, Zarfl, Christiane, Beckingham, Barbara, Grathwohl, Peter
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2022
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10125305/
https://www.ncbi.nlm.nih.gov/pubmed/37101725
http://dx.doi.org/10.1021/acsenvironau.2c00015
Descripción
Sumario:[Image: see text] Long-term accumulation in the soils of ubiquitous organic pollutants such as many polycyclic aromatic hydrocarbons (PAHs) depends on deposition from the atmosphere, revolatilization, leaching, and degradation processes such as photolysis and biodegradation. Quantifying the phase distribution and fluxes of these compounds across environmental compartments is thus crucial to understand the long-term contaminant fate. The gas-phase exchange between soil and atmosphere follows chemical fugacity gradients that can be approximated by gas-phase concentrations, yet which are difficult to measure directly. Thus, passive sampling, measured sorption isotherms, or empirical relationships to estimate sorption distribution have been combined in this study to determine aqueous (or gas) phase concentrations from measured bulk concentrations in soil solids. All these methods have their strengths and weaknesses but agree within 1 order of magnitude except for ex situ passive samplers employed in soil slurries, which estimated much lower concentrations in soil water and gas likely due to experimental artifacts. In field measurements, PAH concentrations determined in the atmosphere show a pronounced seasonality with some revolatilization during summer and gaseous deposition during winter, but overall dry deposition dominates annual mean fluxes. The characteristic patterns of PAHs in the different phases (gas phase, atmospheric passive samplers, bulk deposition, and soil solids) confirm the expected compound-specific distribution pattern and behavior. Since revolatilization fluxes in summer are only minor and wet and dry deposition is ongoing, our results clearly show that the PAH loads in topsoils will continue to increase.