Cargando…
iEnhancer-ELM: improve enhancer identification by extracting position-related multiscale contextual information based on enhancer language models
MOTIVATION: Enhancers are important cis-regulatory elements that regulate a wide range of biological functions and enhance the transcription of target genes. Although many feature extraction methods have been proposed to improve the performance of enhancer identification, they cannot learn position-...
Autores principales: | Li, Jiahao, Wu, Zhourun, Lin, Wenhao, Luo, Jiawei, Zhang, Jun, Chen, Qingcai, Chen, Junjie |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10125906/ https://www.ncbi.nlm.nih.gov/pubmed/37113248 http://dx.doi.org/10.1093/bioadv/vbad043 |
Ejemplares similares
-
iEnhancer-ECNN: identifying enhancers and their strength using ensembles of convolutional neural networks
por: Nguyen, Quang H., et al.
Publicado: (2019) -
iEnhancer-DCSA: identifying enhancers via dual-scale convolution and spatial attention
por: Wang, Wenjun, et al.
Publicado: (2023) -
iEnhancer-EBLSTM: Identifying Enhancers and Strengths by Ensembles of Bidirectional Long Short-Term Memory
por: Niu, Kun, et al.
Publicado: (2021) -
iEnhancer-DCLA: using the original sequence to identify enhancers and their strength based on a deep learning framework
por: Liao, Meng, et al.
Publicado: (2022) -
iEnhancer-DCSV: Predicting enhancers and their strength based on DenseNet and improved convolutional block attention module
por: Jia, Jianhua, et al.
Publicado: (2023)