Cargando…

Deep-SAGA: a deep-learning-based system for automatic gaze annotation from eye-tracking data

With continued advancements in portable eye-tracker technology liberating experimenters from the restraints of artificial laboratory designs, research can now collect gaze data from real-world, natural navigation. However, the field lacks a robust method for achieving this, as past approaches relied...

Descripción completa

Detalles Bibliográficos
Autores principales: Deane, Oliver, Toth, Eszter, Yeo, Sang-Hoon
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer US 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10126076/
https://www.ncbi.nlm.nih.gov/pubmed/35650384
http://dx.doi.org/10.3758/s13428-022-01833-4
Descripción
Sumario:With continued advancements in portable eye-tracker technology liberating experimenters from the restraints of artificial laboratory designs, research can now collect gaze data from real-world, natural navigation. However, the field lacks a robust method for achieving this, as past approaches relied upon the time-consuming manual annotation of eye-tracking data, while previous attempts at automation lack the necessary versatility for in-the-wild navigation trials consisting of complex and dynamic scenes. Here, we propose a system capable of informing researchers of where and what a user’s gaze is focused upon at any one time. The system achieves this by first running footage recorded on a head-mounted camera through a deep-learning-based object detection algorithm called Masked Region-based Convolutional Neural Network (Mask R-CNN). The algorithm’s output is combined with frame-by-frame gaze coordinates measured by an eye-tracking device synchronized with the head-mounted camera to detect and annotate, without any manual intervention, what a user looked at for each frame of the provided footage. The effectiveness of the presented methodology was legitimized by a comparison between the system output and that of manual coders. High levels of agreement between the two validated the system as a preferable data collection technique as it was capable of processing data at a significantly faster rate than its human counterpart. Support for the system’s practicality was then further demonstrated via a case study exploring the mediatory effects of gaze behaviors on an environment-driven attentional bias.