Cargando…
Deep-SAGA: a deep-learning-based system for automatic gaze annotation from eye-tracking data
With continued advancements in portable eye-tracker technology liberating experimenters from the restraints of artificial laboratory designs, research can now collect gaze data from real-world, natural navigation. However, the field lacks a robust method for achieving this, as past approaches relied...
Autores principales: | Deane, Oliver, Toth, Eszter, Yeo, Sang-Hoon |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10126076/ https://www.ncbi.nlm.nih.gov/pubmed/35650384 http://dx.doi.org/10.3758/s13428-022-01833-4 |
Ejemplares similares
-
Eye-Gaze Controlled Wheelchair Based on Deep Learning
por: Xu, Jun, et al.
Publicado: (2023) -
Automatic Annotation of Subsea Pipelines Using Deep Learning
por: Stamoulakatos, Anastasios, et al.
Publicado: (2020) -
Annotation-efficient deep learning for automatic medical image segmentation
por: Wang, Shanshan, et al.
Publicado: (2021) -
DeepGaze III: Modeling free-viewing human scanpaths with deep learning
por: Kümmerer, Matthias, et al.
Publicado: (2022) -
Gazing at Games: An Introduction to Eye Tracking Control
por: Sundstedt, Veronica
Publicado: (2012)