Cargando…

On p-harmonic self-maps of spheres

In this manuscript we study rotationally p-harmonic maps between spheres. We prove that for (p) given, there exist infinitely many p-harmonic self-maps of [Formula: see text] for each [Formula: see text] with [Formula: see text] . In the case of the identity map of [Formula: see text] we explicitly...

Descripción completa

Detalles Bibliográficos
Autores principales: Branding, Volker, Siffert, Anna
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10126078/
https://www.ncbi.nlm.nih.gov/pubmed/37122481
http://dx.doi.org/10.1007/s00526-023-02481-y
Descripción
Sumario:In this manuscript we study rotationally p-harmonic maps between spheres. We prove that for (p) given, there exist infinitely many p-harmonic self-maps of [Formula: see text] for each [Formula: see text] with [Formula: see text] . In the case of the identity map of [Formula: see text] we explicitly determine the spectrum of the corresponding Jacobi operator and show that for [Formula: see text] , the identity map of [Formula: see text] is equivariantly stable when interpreted as a p-harmonic self-map of [Formula: see text] .