Cargando…

Predicting new crescent moon visibility applying machine learning algorithms

The world's population is projected to grow 32% in the coming years, and the number of Muslims is expected to grow by 70%—from 1.8 billion in 2015 to about 3 billion in 2060. Hijri is the Islamic calendar, also known as the lunar Hijri calendar, which consists of 12 lunar months, and it is tied...

Descripción completa

Detalles Bibliográficos
Autores principales: Al-Rajab, Murad, Loucif, Samia, Al Risheh, Yazan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10126129/
https://www.ncbi.nlm.nih.gov/pubmed/37095098
http://dx.doi.org/10.1038/s41598-023-32807-x
Descripción
Sumario:The world's population is projected to grow 32% in the coming years, and the number of Muslims is expected to grow by 70%—from 1.8 billion in 2015 to about 3 billion in 2060. Hijri is the Islamic calendar, also known as the lunar Hijri calendar, which consists of 12 lunar months, and it is tied to the Moon phases where a new crescent Moon marks the beginning of each month. Muslims use the Hijri calendar to determine important dates and religious events such as Ramadan, Haj, Muharram, etc. Till today, there is no consensus on deciding on the beginning of Ramadan month within the Muslim community. This is mainly due to the imprecise observations of the new crescent Moon in different locations. Artificial intelligence and its sub-field machine learning have shown great success in their application in several fields. In this paper, we propose the use of machine learning algorithms to help in determining the start of Ramadan month by predicting the visibility of the new crescent Moon. The results obtained from our experiments have shown very good accurate prediction and evaluation performance. The Random Forest and Support Vector Machine classifiers have provided promising results compared to other classifiers considered in this study in predicting the visibility of the new Moon.