Cargando…
Machine learning combined with radiomics and deep learning features extracted from CT images: a novel AI model to distinguish benign from malignant ovarian tumors
BACKGROUND: To develop an artificial intelligence (AI) model with radiomics and deep learning (DL) features extracted from CT images to distinguish benign from malignant ovarian tumors. METHODS: We enrolled 149 patients with pathologically confirmed ovarian tumors. A total of 185 tumors were include...
Autores principales: | Jan, Ya-Ting, Tsai, Pei-Shan, Huang, Wen-Hui, Chou, Ling-Ying, Huang, Shih-Chieh, Wang, Jing-Zhe, Lu, Pei-Hsuan, Lin, Dao-Chen, Yen, Chun-Sheng, Teng, Ju-Ping, Mok, Greta S. P., Shih, Cheng-Ting, Wu, Tung-Hsin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Vienna
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10126170/ https://www.ncbi.nlm.nih.gov/pubmed/37093321 http://dx.doi.org/10.1186/s13244-023-01412-x |
Ejemplares similares
-
Children’s Digital Art Ability Training System Based on AI-Assisted Learning: A Case Study of Drawing Color Perception
por: Chen, Shih-Yeh, et al.
Publicado: (2022) -
An Approach Based on Mammographic Imaging and Radiomics for Distinguishing Male Benign and Malignant Lesions: A Preliminary Study
por: Huang, Yan, et al.
Publicado: (2021) -
A Radiomics Nomogram for Distinguishing Benign From Malignant Round-Like Breast Tumors
por: Wang, Lanyun, et al.
Publicado: (2022) -
Spectral CT-based radiomics signature for distinguishing malignant pulmonary nodules from benign
por: Xu, Hang, et al.
Publicado: (2023) -
A Deep Learning-Based Radiomics Model for Differentiating Benign and Malignant Renal Tumors()
por: Zhou, Leilei, et al.
Publicado: (2018)