Cargando…
Graph convolutional network-based feature selection for high-dimensional and low-sample size data
MOTIVATION: Feature selection is a powerful dimension reduction technique which selects a subset of relevant features for model construction. Numerous feature selection methods have been proposed, but most of them fail under the high-dimensional and low-sample size (HDLSS) setting due to the challen...
Autores principales: | Chen, Can, Weiss, Scott T, Liu, Yang-Yu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10126323/ https://www.ncbi.nlm.nih.gov/pubmed/37084264 http://dx.doi.org/10.1093/bioinformatics/btad135 |
Ejemplares similares
-
Learning Three Dimensional Tennis Shots Using Graph Convolutional Networks
por: Skublewska-Paszkowska, Maria, et al.
Publicado: (2020) -
Geometric graphs from data to aid classification tasks with Graph Convolutional Networks
por: Qian, Yifan, et al.
Publicado: (2021) -
Path-enhanced graph convolutional networks for node classification without features
por: Jiao, Qingju, et al.
Publicado: (2023) -
Covid-19 classification by FGCNet with deep feature fusion from graph convolutional network and convolutional neural network
por: Wang, Shui-Hua, et al.
Publicado: (2021) -
Multi-Dimensional Enhanced Seizure Prediction Framework Based on Graph Convolutional Network
por: Chen, Xin, et al.
Publicado: (2021)