Cargando…
Brain motion networks predict head motion during rest- and task-fMRI
INTRODUCTION: The capacity to stay still during scanning, which is necessary to avoid motion confounds while imaging, varies markedly between people. METHODS: Here we investigated the effect of head motion on functional connectivity using connectome-based predictive modeling (CPM) and publicly avail...
Autores principales: | Tomasi, Dardo, Volkow, Nora D. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10126373/ https://www.ncbi.nlm.nih.gov/pubmed/37113158 http://dx.doi.org/10.3389/fnins.2023.1096232 |
Ejemplares similares
-
Resting State fMRI: Going Through the Motions
por: Maknojia, Sanam, et al.
Publicado: (2019) -
Influences of Head Motion Regression on High-Frequency Oscillation Amplitudes of Resting-State fMRI Signals
por: Yuan, Bin-Ke, et al.
Publicado: (2016) -
Prediction of Task-Related BOLD fMRI with Amplitude Signatures of Resting-State fMRI
por: Kannurpatti, Sridhar S., et al.
Publicado: (2012) -
Resting Functional Connectivity of Language Networks: Characterization and Reproducibility
por: Tomasi, Dardo, et al.
Publicado: (2012) -
Children’s head motion during fMRI tasks is heritable and stable over time
por: Engelhardt, Laura E., et al.
Publicado: (2017)