Cargando…
Head and neck tumor segmentation convolutional neural network robust to missing PET/CT modalities using channel dropout
Objective. Radiation therapy for head and neck (H&N) cancer relies on accurate segmentation of the primary tumor. A robust, accurate, and automated gross tumor volume segmentation method is warranted for H&N cancer therapeutic management. The purpose of this study is to develop a novel deep...
Autores principales: | Zhao, Lin-mei, Zhang, Helen, Kim, Daniel D, Ghimire, Kanchan, Hu, Rong, Kargilis, Daniel C, Tang, Lei, Meng, Shujuan, Chen, Quan, Liao, Wei-hua, Bai, Harrison, Jiao, Zhicheng, Feng, Xue |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
IOP Publishing
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10126383/ https://www.ncbi.nlm.nih.gov/pubmed/37019119 http://dx.doi.org/10.1088/1361-6560/accac9 |
Ejemplares similares
-
Impute the missing data using retrieved dropouts
por: Wang, Shuai, et al.
Publicado: (2022) -
Head and Neck Cancer Segmentation in FDG PET Images: Performance Comparison of Convolutional Neural Networks and Vision Transformers
por: Xiong, Xiaofan, et al.
Publicado: (2023) -
Attentional profiles linked to event segmentation are robust to missing information
por: Kosie, Jessica E., et al.
Publicado: (2019) -
Hybridized sine cosine algorithm with convolutional neural networks dropout regularization application
por: Bacanin, Nebojsa, et al.
Publicado: (2022) -
Medical prediction from missing data with max-minus negative regularized dropout
por: Hu, Lvhui, et al.
Publicado: (2023)