Cargando…
An interpretable hybrid predictive model of COVID-19 cases using autoregressive model and LSTM
The Coronavirus Disease 2019 (COVID-19) has had a profound impact on global health and economy, making it crucial to build accurate and interpretable data-driven predictive models for COVID-19 cases to improve public policy making. The extremely large scale of the pandemic and the intrinsically chan...
Autores principales: | Zhang, Yangyi, Tang, Sui, Yu, Guo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10126574/ https://www.ncbi.nlm.nih.gov/pubmed/37185289 http://dx.doi.org/10.1038/s41598-023-33685-z |
Ejemplares similares
-
Are CDS spreads predictable during the Covid-19 pandemic? Forecasting based on SVM, GMDH, LSTM and Markov switching autoregression
por: Vukovic, Darko B., et al.
Publicado: (2022) -
Predictions for COVID-19 with deep learning models of LSTM, GRU and Bi-LSTM
por: Shahid, Farah, et al.
Publicado: (2020) -
Autoregressive count data modeling on mobility patterns to predict cases of COVID-19 infection
por: Zhao, Jing, et al.
Publicado: (2022) -
Modelling COVID-19 in Senegal and China with count autoregressive models
por: Gning, Lucien Diégane, et al.
Publicado: (2022) -
An integrated LSTM-HeteroRGNN model for interpretable opioid overdose risk prediction
por: Dong, Xinyu, et al.
Publicado: (2023)