Cargando…
A spatial-temporal linear feature learning algorithm for P300-based brain-computer interfaces
Speller brain-computer interface (BCI) systems can help neuromuscular disorders patients write their thoughts by using the electroencephalogram (EEG) signals by just focusing on the speller tasks. For practical speller-based BCI systems, the P300 event-related brain potential is measured by using th...
Autores principales: | Aghili, Seyedeh Nadia, Kilani, Sepideh, Khushaba, Rami N, Rouhani, Ehsan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10126938/ https://www.ncbi.nlm.nih.gov/pubmed/37113774 http://dx.doi.org/10.1016/j.heliyon.2023.e15380 |
Ejemplares similares
-
Temporal and Spatial Features of Single-Trial EEG for Brain-Computer Interface
por: Zhao, Qibin, et al.
Publicado: (2007) -
Spatio-temporal feature extraction in sensory electroneurographic signals
por: Silveira, C., et al.
Publicado: (2022) -
Feature Extraction and Selection for Myoelectric Control Based on Wearable EMG Sensors
por: Phinyomark, Angkoon, et al.
Publicado: (2018) -
Time-Shift Correlation Algorithm for P300 Event Related Potential Brain-Computer Interface Implementation
por: Liu, Ju-Chi, et al.
Publicado: (2016) -
A Tactile P300 Brain-Computer Interface
por: Brouwer, Anne-Marie, et al.
Publicado: (2010)