Cargando…
Light/dark phase influences intra-individual plasticity in maintenance metabolic rate and exploratory behavior independently in the Asiatic toad
BACKGROUND: It is well-known that light/dark phase can affect energy expenditure and behaviors of most organisms; however, its influences on individuality (inter-individual variance) and plasticity (intra-individual variance), as well as their associations remain unclear. To approach this question,...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10127016/ https://www.ncbi.nlm.nih.gov/pubmed/37170388 http://dx.doi.org/10.1186/s40850-022-00139-4 |
Sumario: | BACKGROUND: It is well-known that light/dark phase can affect energy expenditure and behaviors of most organisms; however, its influences on individuality (inter-individual variance) and plasticity (intra-individual variance), as well as their associations remain unclear. To approach this question, we repeatedly measured maintenance metabolic rate (MR), exploratory and risk-taking behaviors across light/dark phase four times using wild-caught female Asiatic toads (Bufo gargarizans), and partitioned their variance components with univariate and bivariate mixed-effects models. RESULTS: The group means of maintenance MR and risk-taking behavior increased at night, while the group mean of exploratory behavior remained constant throughout the day. At night, the intra-individual variances were elevated in maintenance MR but reduced in exploration, suggesting that phenotypic plasticity was enhanced in the former but constrained in the latter. In addition, maintenance MR was not coupled with exploratory or risk-taking behaviors in daytime or at night, neither at the inter-individual nor intra-individual levels. CONCLUSIONS: Our findings suggest that these traits are independently modulated by the light/dark phase, and an allocation energy management model may be applicable in this species. This study sheds new insights into how amphibians adapt nocturnal lifestyle across multiple hierarchy levels via metabolic and behavioral adjustments. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s40850-022-00139-4. |
---|