Cargando…
Characteristics of a Large, Labeled Data Set for the Training of Artificial Intelligence for Glaucoma Screening with Fundus Photographs
PURPOSE: Significant visual impairment due to glaucoma is largely caused by the disease being detected too late. OBJECTIVE: To build a labeled data set for training artificial intelligence (AI) algorithms for glaucoma screening by fundus photography, to assess the accuracy of the graders, and to cha...
Autores principales: | Lemij, Hans G., Vente, Coen de, Sánchez, Clara I., Vermeer, Koen A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10127130/ https://www.ncbi.nlm.nih.gov/pubmed/37113471 http://dx.doi.org/10.1016/j.xops.2023.100300 |
Ejemplares similares
-
The use of artificial intelligence in detecting papilledema from fundus photographs
por: Anandi, Lazuardiah, et al.
Publicado: (2023) -
Artificial intelligence-based detection of epimacular membrane from color fundus photographs
por: Shao, Enhua, et al.
Publicado: (2021) -
An Artificial-Intelligence–Based Automated Grading and Lesions Segmentation System for Myopic Maculopathy Based on Color Fundus Photographs
por: Tang, Jia, et al.
Publicado: (2022) -
A fast and fully automated system for glaucoma detection using color fundus photographs
por: Saha, Sajib, et al.
Publicado: (2023) -
Artificial intelligence for the detection of age-related macular degeneration in color fundus photographs: A systematic review and meta-analysis
por: Dong, Li, et al.
Publicado: (2021)