Cargando…
Embedding channel pruning within the CNN architecture design using a bi-level evolutionary approach
Remarkable advancements have been achieved in machine learning and computer vision through the utilization of deep neural networks. Among the most advantageous of these networks is the convolutional neural network (CNN). It has been used in pattern recognition, medical diagnosis, and signal processi...
Autores principales: | Louati, Hassen, Louati, Ali, Bechikh, Slim, Kariri, Elham |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10127175/ https://www.ncbi.nlm.nih.gov/pubmed/37359327 http://dx.doi.org/10.1007/s11227-023-05273-5 |
Ejemplares similares
-
Joint design and compression of convolutional neural networks as a Bi-level optimization problem
por: Louati, Hassen, et al.
Publicado: (2022) -
Topology optimization search of deep convolution neural networks for CT and X-ray image classification
por: Louati, Hassen, et al.
Publicado: (2022) -
Recent advances in evolutionary multi-objective optimization
por: Bechikh, Slim, et al.
Publicado: (2017) -
AoCStream: All-on-Chip CNN Accelerator with Stream-Based Line-Buffer Architecture and Accelerator-Aware Pruning
por: Kang, Hyeong-Ju, et al.
Publicado: (2023) -
Retrain or Not Retrain? - Efficient Pruning Methods of Deep CNN Networks
por: Pietron, Marcin, et al.
Publicado: (2020)