Cargando…

Minimal Out-of-Equilibrium Metabolism for Synthetic Cells: A Membrane Perspective

[Image: see text] Life-like systems need to maintain a basal metabolism, which includes importing a variety of building blocks required for macromolecule synthesis, exporting dead-end products, and recycling cofactors and metabolic intermediates, while maintaining steady internal physical and chemic...

Descripción completa

Detalles Bibliográficos
Autores principales: Bailoni, Eleonora, Partipilo, Michele, Coenradij, Jelmer, Grundel, Douwe A. J., Slotboom, Dirk J., Poolman, Bert
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2023
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10127287/
https://www.ncbi.nlm.nih.gov/pubmed/37027340
http://dx.doi.org/10.1021/acssynbio.3c00062
_version_ 1785030432768655360
author Bailoni, Eleonora
Partipilo, Michele
Coenradij, Jelmer
Grundel, Douwe A. J.
Slotboom, Dirk J.
Poolman, Bert
author_facet Bailoni, Eleonora
Partipilo, Michele
Coenradij, Jelmer
Grundel, Douwe A. J.
Slotboom, Dirk J.
Poolman, Bert
author_sort Bailoni, Eleonora
collection PubMed
description [Image: see text] Life-like systems need to maintain a basal metabolism, which includes importing a variety of building blocks required for macromolecule synthesis, exporting dead-end products, and recycling cofactors and metabolic intermediates, while maintaining steady internal physical and chemical conditions (physicochemical homeostasis). A compartment, such as a unilamellar vesicle, functionalized with membrane-embedded transport proteins and metabolic enzymes encapsulated in the lumen meets these requirements. Here, we identify four modules designed for a minimal metabolism in a synthetic cell with a lipid bilayer boundary: energy provision and conversion, physicochemical homeostasis, metabolite transport, and membrane expansion. We review design strategies that can be used to fulfill these functions with a focus on the lipid and membrane protein composition of a cell. We compare our bottom-up design with the equivalent essential modules of JCVI-syn3a, a top-down genome-minimized living cell with a size comparable to that of large unilamellar vesicles. Finally, we discuss the bottlenecks related to the insertion of a complex mixture of membrane proteins into lipid bilayers and provide a semiquantitative estimate of the relative surface area and lipid-to-protein mass ratios (i.e., the minimal number of membrane proteins) that are required for the construction of a synthetic cell.
format Online
Article
Text
id pubmed-10127287
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-101272872023-04-26 Minimal Out-of-Equilibrium Metabolism for Synthetic Cells: A Membrane Perspective Bailoni, Eleonora Partipilo, Michele Coenradij, Jelmer Grundel, Douwe A. J. Slotboom, Dirk J. Poolman, Bert ACS Synth Biol [Image: see text] Life-like systems need to maintain a basal metabolism, which includes importing a variety of building blocks required for macromolecule synthesis, exporting dead-end products, and recycling cofactors and metabolic intermediates, while maintaining steady internal physical and chemical conditions (physicochemical homeostasis). A compartment, such as a unilamellar vesicle, functionalized with membrane-embedded transport proteins and metabolic enzymes encapsulated in the lumen meets these requirements. Here, we identify four modules designed for a minimal metabolism in a synthetic cell with a lipid bilayer boundary: energy provision and conversion, physicochemical homeostasis, metabolite transport, and membrane expansion. We review design strategies that can be used to fulfill these functions with a focus on the lipid and membrane protein composition of a cell. We compare our bottom-up design with the equivalent essential modules of JCVI-syn3a, a top-down genome-minimized living cell with a size comparable to that of large unilamellar vesicles. Finally, we discuss the bottlenecks related to the insertion of a complex mixture of membrane proteins into lipid bilayers and provide a semiquantitative estimate of the relative surface area and lipid-to-protein mass ratios (i.e., the minimal number of membrane proteins) that are required for the construction of a synthetic cell. American Chemical Society 2023-04-07 /pmc/articles/PMC10127287/ /pubmed/37027340 http://dx.doi.org/10.1021/acssynbio.3c00062 Text en © 2023 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by/4.0/Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Bailoni, Eleonora
Partipilo, Michele
Coenradij, Jelmer
Grundel, Douwe A. J.
Slotboom, Dirk J.
Poolman, Bert
Minimal Out-of-Equilibrium Metabolism for Synthetic Cells: A Membrane Perspective
title Minimal Out-of-Equilibrium Metabolism for Synthetic Cells: A Membrane Perspective
title_full Minimal Out-of-Equilibrium Metabolism for Synthetic Cells: A Membrane Perspective
title_fullStr Minimal Out-of-Equilibrium Metabolism for Synthetic Cells: A Membrane Perspective
title_full_unstemmed Minimal Out-of-Equilibrium Metabolism for Synthetic Cells: A Membrane Perspective
title_short Minimal Out-of-Equilibrium Metabolism for Synthetic Cells: A Membrane Perspective
title_sort minimal out-of-equilibrium metabolism for synthetic cells: a membrane perspective
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10127287/
https://www.ncbi.nlm.nih.gov/pubmed/37027340
http://dx.doi.org/10.1021/acssynbio.3c00062
work_keys_str_mv AT bailonieleonora minimaloutofequilibriummetabolismforsyntheticcellsamembraneperspective
AT partipilomichele minimaloutofequilibriummetabolismforsyntheticcellsamembraneperspective
AT coenradijjelmer minimaloutofequilibriummetabolismforsyntheticcellsamembraneperspective
AT grundeldouweaj minimaloutofequilibriummetabolismforsyntheticcellsamembraneperspective
AT slotboomdirkj minimaloutofequilibriummetabolismforsyntheticcellsamembraneperspective
AT poolmanbert minimaloutofequilibriummetabolismforsyntheticcellsamembraneperspective