Cargando…
Spatial navigation is associated with subcortical alterations and progression risk in subjective cognitive decline
BACKGROUND: Subjective cognitive decline (SCD) may serve as a symptomatic indicator for preclinical Alzheimer’s disease; however, SCD is a heterogeneous entity regarding clinical progression. We aimed to investigate whether spatial navigation could reveal subcortical structural alterations and the r...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10127414/ https://www.ncbi.nlm.nih.gov/pubmed/37098612 http://dx.doi.org/10.1186/s13195-023-01233-6 |
_version_ | 1785030459416117248 |
---|---|
author | Chen, Qian Chen, Futao Long, Cong Zhu, Yajing Jiang, Yaoxian Zhu, Zhengyang Lu, Jiaming Zhang, Xin Nedelska, Zuzana Hort, Jakub Zhang, Bing |
author_facet | Chen, Qian Chen, Futao Long, Cong Zhu, Yajing Jiang, Yaoxian Zhu, Zhengyang Lu, Jiaming Zhang, Xin Nedelska, Zuzana Hort, Jakub Zhang, Bing |
author_sort | Chen, Qian |
collection | PubMed |
description | BACKGROUND: Subjective cognitive decline (SCD) may serve as a symptomatic indicator for preclinical Alzheimer’s disease; however, SCD is a heterogeneous entity regarding clinical progression. We aimed to investigate whether spatial navigation could reveal subcortical structural alterations and the risk of progression to objective cognitive impairment in SCD individuals. METHODS: One hundred and eighty participants were enrolled: those with SCD (n = 80), normal controls (NCs, n = 77), and mild cognitive impairment (MCI, n = 23). SCD participants were further divided into the SCD-good (G-SCD, n = 40) group and the SCD-bad (B-SCD, n = 40) group according to their spatial navigation performance. Volumes of subcortical structures were calculated and compared among the four groups, including basal forebrain, thalamus, caudate, putamen, pallidum, hippocampus, amygdala, and accumbens. Topological properties of the subcortical structural covariance network were also calculated. With an interval of 1.5 years ± 12 months of follow-up, the progression rate to MCI was compared between the G-SCD and B-SCD groups. RESULTS: Volumes of the basal forebrain, the right hippocampus, and their respective subfields differed significantly among the four groups (p < 0.05, false discovery rate corrected). The B-SCD group showed lower volumes in the basal forebrain than the G-SCD group, especially in the Ch4p and Ch4a-i subfields. Furthermore, the structural covariance network of the basal forebrain and right hippocampal subfields showed that the B-SCD group had a larger Lambda than the G-SCD group, which suggested weakened network integration in the B-SCD group. At follow-up, the B-SCD group had a significantly higher conversion rate to MCI than the G-SCD group. CONCLUSION: Compared to SCD participants with good spatial navigation performance, SCD participants with bad performance showed lower volumes in the basal forebrain, a reorganized structural covariance network of subcortical nuclei, and an increased risk of progression to MCI. Our findings indicated that spatial navigation may have great potential to identify SCD subjects at higher risk of clinical progression, which may contribute to making more precise clinical decisions for SCD individuals who seek medical help. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13195-023-01233-6. |
format | Online Article Text |
id | pubmed-10127414 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-101274142023-04-26 Spatial navigation is associated with subcortical alterations and progression risk in subjective cognitive decline Chen, Qian Chen, Futao Long, Cong Zhu, Yajing Jiang, Yaoxian Zhu, Zhengyang Lu, Jiaming Zhang, Xin Nedelska, Zuzana Hort, Jakub Zhang, Bing Alzheimers Res Ther Research BACKGROUND: Subjective cognitive decline (SCD) may serve as a symptomatic indicator for preclinical Alzheimer’s disease; however, SCD is a heterogeneous entity regarding clinical progression. We aimed to investigate whether spatial navigation could reveal subcortical structural alterations and the risk of progression to objective cognitive impairment in SCD individuals. METHODS: One hundred and eighty participants were enrolled: those with SCD (n = 80), normal controls (NCs, n = 77), and mild cognitive impairment (MCI, n = 23). SCD participants were further divided into the SCD-good (G-SCD, n = 40) group and the SCD-bad (B-SCD, n = 40) group according to their spatial navigation performance. Volumes of subcortical structures were calculated and compared among the four groups, including basal forebrain, thalamus, caudate, putamen, pallidum, hippocampus, amygdala, and accumbens. Topological properties of the subcortical structural covariance network were also calculated. With an interval of 1.5 years ± 12 months of follow-up, the progression rate to MCI was compared between the G-SCD and B-SCD groups. RESULTS: Volumes of the basal forebrain, the right hippocampus, and their respective subfields differed significantly among the four groups (p < 0.05, false discovery rate corrected). The B-SCD group showed lower volumes in the basal forebrain than the G-SCD group, especially in the Ch4p and Ch4a-i subfields. Furthermore, the structural covariance network of the basal forebrain and right hippocampal subfields showed that the B-SCD group had a larger Lambda than the G-SCD group, which suggested weakened network integration in the B-SCD group. At follow-up, the B-SCD group had a significantly higher conversion rate to MCI than the G-SCD group. CONCLUSION: Compared to SCD participants with good spatial navigation performance, SCD participants with bad performance showed lower volumes in the basal forebrain, a reorganized structural covariance network of subcortical nuclei, and an increased risk of progression to MCI. Our findings indicated that spatial navigation may have great potential to identify SCD subjects at higher risk of clinical progression, which may contribute to making more precise clinical decisions for SCD individuals who seek medical help. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13195-023-01233-6. BioMed Central 2023-04-25 /pmc/articles/PMC10127414/ /pubmed/37098612 http://dx.doi.org/10.1186/s13195-023-01233-6 Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/ (https://creativecommons.org/publicdomain/zero/1.0/) ) applies to the data made available in this article, unless otherwise stated in a credit line to the data. |
spellingShingle | Research Chen, Qian Chen, Futao Long, Cong Zhu, Yajing Jiang, Yaoxian Zhu, Zhengyang Lu, Jiaming Zhang, Xin Nedelska, Zuzana Hort, Jakub Zhang, Bing Spatial navigation is associated with subcortical alterations and progression risk in subjective cognitive decline |
title | Spatial navigation is associated with subcortical alterations and progression risk in subjective cognitive decline |
title_full | Spatial navigation is associated with subcortical alterations and progression risk in subjective cognitive decline |
title_fullStr | Spatial navigation is associated with subcortical alterations and progression risk in subjective cognitive decline |
title_full_unstemmed | Spatial navigation is associated with subcortical alterations and progression risk in subjective cognitive decline |
title_short | Spatial navigation is associated with subcortical alterations and progression risk in subjective cognitive decline |
title_sort | spatial navigation is associated with subcortical alterations and progression risk in subjective cognitive decline |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10127414/ https://www.ncbi.nlm.nih.gov/pubmed/37098612 http://dx.doi.org/10.1186/s13195-023-01233-6 |
work_keys_str_mv | AT chenqian spatialnavigationisassociatedwithsubcorticalalterationsandprogressionriskinsubjectivecognitivedecline AT chenfutao spatialnavigationisassociatedwithsubcorticalalterationsandprogressionriskinsubjectivecognitivedecline AT longcong spatialnavigationisassociatedwithsubcorticalalterationsandprogressionriskinsubjectivecognitivedecline AT zhuyajing spatialnavigationisassociatedwithsubcorticalalterationsandprogressionriskinsubjectivecognitivedecline AT jiangyaoxian spatialnavigationisassociatedwithsubcorticalalterationsandprogressionriskinsubjectivecognitivedecline AT zhuzhengyang spatialnavigationisassociatedwithsubcorticalalterationsandprogressionriskinsubjectivecognitivedecline AT lujiaming spatialnavigationisassociatedwithsubcorticalalterationsandprogressionriskinsubjectivecognitivedecline AT zhangxin spatialnavigationisassociatedwithsubcorticalalterationsandprogressionriskinsubjectivecognitivedecline AT nedelskazuzana spatialnavigationisassociatedwithsubcorticalalterationsandprogressionriskinsubjectivecognitivedecline AT hortjakub spatialnavigationisassociatedwithsubcorticalalterationsandprogressionriskinsubjectivecognitivedecline AT zhangbing spatialnavigationisassociatedwithsubcorticalalterationsandprogressionriskinsubjectivecognitivedecline |