Cargando…

FliL Functions in Diverse Microbes to Negatively Modulate Motor Output via Its N-Terminal Region

The flagellar motor protein FliL is conserved across many microbes, but its exact role has been obscured by varying fliL mutant phenotypes. We reanalyzed results from fliL studies and found they utilized alleles that differed in the amount of N- and C-terminal regions that were retained. Alleles tha...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Xiaolin, Roujeinikova, Anna, Ottemann, Karen M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society for Microbiology 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10127578/
https://www.ncbi.nlm.nih.gov/pubmed/36852985
http://dx.doi.org/10.1128/mbio.00283-23
Descripción
Sumario:The flagellar motor protein FliL is conserved across many microbes, but its exact role has been obscured by varying fliL mutant phenotypes. We reanalyzed results from fliL studies and found they utilized alleles that differed in the amount of N- and C-terminal regions that were retained. Alleles that retain the N-terminal cytoplasmic and transmembrane helix (TM) regions in the absence of the C-terminal periplasmic domain result in loss of motility, while alleles that completely lack the N-terminal region, independent of the periplasmic domain, retain motility. We then tested this prediction in Helicobacter pylori fliL and found support for the idea. This analysis suggests that FliL function may be more conserved across bacteria than previously thought, that it is not essential for motility, and that the N-terminal region has the negative ability to regulate motor function.