Cargando…

Stay or Go: Sulfolobales Biofilm Dispersal Is Dependent on a Bifunctional VapB Antitoxin

A type II VapB14 antitoxin regulates biofilm dispersal in the archaeal thermoacidophile Sulfolobus acidocaldarius through traditional toxin neutralization but also through noncanonical transcriptional regulation. Type II VapC toxins are ribonucleases that are neutralized by their proteinaceous cogna...

Descripción completa

Detalles Bibliográficos
Autores principales: Lewis, April M., Willard, Daniel J., H. Manesh, Mohamad J., Sivabalasarma, Shamphavi, Albers, Sonja-Verena, Kelly, Robert M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society for Microbiology 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10127717/
https://www.ncbi.nlm.nih.gov/pubmed/37036347
http://dx.doi.org/10.1128/mbio.00053-23
Descripción
Sumario:A type II VapB14 antitoxin regulates biofilm dispersal in the archaeal thermoacidophile Sulfolobus acidocaldarius through traditional toxin neutralization but also through noncanonical transcriptional regulation. Type II VapC toxins are ribonucleases that are neutralized by their proteinaceous cognate type II VapB antitoxin. VapB antitoxins have a flexible tail at their C terminus that covers the toxin’s active site, neutralizing its activity. VapB antitoxins also have a DNA-binding domain at their N terminus that allows them to autorepress not only their own promoters but also distal targets. VapB14 antitoxin gene deletion in S. acidocaldarius stunted biofilm and planktonic growth and increased motility structures (archaella). Conversely, planktonic cells were devoid of archaella in the ΔvapC14 cognate toxin mutant. VapB14 is highly conserved at both the nucleotide and amino acid levels across the Sulfolobales, extremely unusual for type II antitoxins, which are typically acquired through horizontal gene transfer. Furthermore, homologs of VapB14 are found across the Crenarchaeota, in some Euryarchaeota, and even bacteria. S. acidocaldarius vapB14 and its homolog in the thermoacidophile Metallosphaera sedula (Msed_0871) were both upregulated in biofilm cells, supporting the role of the antitoxin in biofilm regulation. In several Sulfolobales species, including M. sedula, homologs of vapB14 and vapC14 are not colocalized. Strikingly, Sulfuracidifex tepidarius has an unpaired VapB14 homolog and lacks a cognate VapC14, illustrating the toxin-independent conservation of the VapB14 antitoxin. The findings here suggest that a stand-alone VapB-type antitoxin was the product of selective evolutionary pressure to influence biofilm formation in these archaea, a vital microbial community behavior.