Cargando…

A novel medical image segmentation approach by using multi-branch segmentation network based on local and global information synchronous learning

In recent years, there have been several solutions to medical image segmentation, such as U-shaped structure, transformer-based network, and multi-scale feature learning method. However, their network parameters and real-time performance are often neglected and cannot segment boundary regions well....

Descripción completa

Detalles Bibliográficos
Autores principales: Jin, Shangzhu, Yu, Sheng, Peng, Jun, Wang, Hongyi, Zhao, Yan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10127969/
https://www.ncbi.nlm.nih.gov/pubmed/37185374
http://dx.doi.org/10.1038/s41598-023-33357-y
Descripción
Sumario:In recent years, there have been several solutions to medical image segmentation, such as U-shaped structure, transformer-based network, and multi-scale feature learning method. However, their network parameters and real-time performance are often neglected and cannot segment boundary regions well. The main reason is that such networks have deep encoders, a large number of channels, and excessive attention to local information rather than global information, which is crucial to the accuracy of image segmentation. Therefore, we propose a novel multi-branch medical image segmentation network MBSNet. We first design two branches using a parallel residual mixer (PRM) module and dilate convolution block to capture the local and global information of the image. At the same time, a SE-Block and a new spatial attention module enhance the output features. Considering the different output features of the two branches, we adopt a cross-fusion method to effectively combine and complement the features between different layers. MBSNet was tested on five datasets ISIC2018, Kvasir, BUSI, COVID-19, and LGG. The combined results show that MBSNet is lighter, faster, and more accurate. Specifically, for a [Formula: see text] input, MBSNet’s FLOPs is 10.68G, with an F1-Score of [Formula: see text] on the Kvasir test dataset, well above [Formula: see text] for UNet++ with FLOPs of 216.55G. We also use the multi-criteria decision making method TOPSIS based on F1-Score, IOU and Geometric-Mean (G-mean) for overall analysis. The proposed MBSNet model performs better than other competitive methods. Code is available at https://github.com/YuLionel/MBSNet.