Cargando…
ATP Is a Major Determinant of Phototrophic Bacterial Longevity in Growth Arrest
How bacteria transition into growth arrest as part of stationary phase has been well-studied, but our knowledge of features that help cells to stay alive in the following days and weeks is incomplete. Most studies have used heterotrophic bacteria that are growth-arrested by depletion of substrates u...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society for Microbiology
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10128053/ https://www.ncbi.nlm.nih.gov/pubmed/36786592 http://dx.doi.org/10.1128/mbio.03609-22 |
_version_ | 1785030531848601600 |
---|---|
author | Yin, Liang Ma, Hongyu Fones, Elizabeth M. Morris, David R. Harwood, Caroline S. |
author_facet | Yin, Liang Ma, Hongyu Fones, Elizabeth M. Morris, David R. Harwood, Caroline S. |
author_sort | Yin, Liang |
collection | PubMed |
description | How bacteria transition into growth arrest as part of stationary phase has been well-studied, but our knowledge of features that help cells to stay alive in the following days and weeks is incomplete. Most studies have used heterotrophic bacteria that are growth-arrested by depletion of substrates used for both biosynthesis and energy generation, making is difficult to disentangle the effects of the two. In contrast, when grown anaerobically in light, the phototrophic bacterium Rhodopseudomonas palustris generates ATP from light via cyclic photophosphorylation, and builds biomolecules from organic substrates, such as acetate. As such, energy generation and carbon utilization are independent from one another. Here, we compared the physiological and molecular responses of R. palustris to growth arrest caused by carbon source depletion in light (energy-replete) and dark (energy-depleted) conditions. Both sets of cells remained viable for 6 to 10 days, at which point dark-incubated cells lost viability, whereas light-incubated cells remained fully viable for 60 days. Dark-incubated cells were depleted in intracellular ATP prior to losing viability, suggesting that ATP depletion is a cause of cell death. Dark-incubated cells also shut down measurable protein synthesis, whereas light-incubated cells continued to synthesize proteins at low levels. Cells incubated in both conditions continued to transcribe genes. We suggest that R. palustris may completely shut down protein synthesis in dark, energy-depleted, conditions as a strategy to survive the nighttime hours of day/night cycles it experiences in nature, where there is a predictable source of energy in the form of sunlight only during the day. |
format | Online Article Text |
id | pubmed-10128053 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | American Society for Microbiology |
record_format | MEDLINE/PubMed |
spelling | pubmed-101280532023-04-26 ATP Is a Major Determinant of Phototrophic Bacterial Longevity in Growth Arrest Yin, Liang Ma, Hongyu Fones, Elizabeth M. Morris, David R. Harwood, Caroline S. mBio Research Article How bacteria transition into growth arrest as part of stationary phase has been well-studied, but our knowledge of features that help cells to stay alive in the following days and weeks is incomplete. Most studies have used heterotrophic bacteria that are growth-arrested by depletion of substrates used for both biosynthesis and energy generation, making is difficult to disentangle the effects of the two. In contrast, when grown anaerobically in light, the phototrophic bacterium Rhodopseudomonas palustris generates ATP from light via cyclic photophosphorylation, and builds biomolecules from organic substrates, such as acetate. As such, energy generation and carbon utilization are independent from one another. Here, we compared the physiological and molecular responses of R. palustris to growth arrest caused by carbon source depletion in light (energy-replete) and dark (energy-depleted) conditions. Both sets of cells remained viable for 6 to 10 days, at which point dark-incubated cells lost viability, whereas light-incubated cells remained fully viable for 60 days. Dark-incubated cells were depleted in intracellular ATP prior to losing viability, suggesting that ATP depletion is a cause of cell death. Dark-incubated cells also shut down measurable protein synthesis, whereas light-incubated cells continued to synthesize proteins at low levels. Cells incubated in both conditions continued to transcribe genes. We suggest that R. palustris may completely shut down protein synthesis in dark, energy-depleted, conditions as a strategy to survive the nighttime hours of day/night cycles it experiences in nature, where there is a predictable source of energy in the form of sunlight only during the day. American Society for Microbiology 2023-02-14 /pmc/articles/PMC10128053/ /pubmed/36786592 http://dx.doi.org/10.1128/mbio.03609-22 Text en Copyright © 2023 Yin et al. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Research Article Yin, Liang Ma, Hongyu Fones, Elizabeth M. Morris, David R. Harwood, Caroline S. ATP Is a Major Determinant of Phototrophic Bacterial Longevity in Growth Arrest |
title | ATP Is a Major Determinant of Phototrophic Bacterial Longevity in Growth Arrest |
title_full | ATP Is a Major Determinant of Phototrophic Bacterial Longevity in Growth Arrest |
title_fullStr | ATP Is a Major Determinant of Phototrophic Bacterial Longevity in Growth Arrest |
title_full_unstemmed | ATP Is a Major Determinant of Phototrophic Bacterial Longevity in Growth Arrest |
title_short | ATP Is a Major Determinant of Phototrophic Bacterial Longevity in Growth Arrest |
title_sort | atp is a major determinant of phototrophic bacterial longevity in growth arrest |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10128053/ https://www.ncbi.nlm.nih.gov/pubmed/36786592 http://dx.doi.org/10.1128/mbio.03609-22 |
work_keys_str_mv | AT yinliang atpisamajordeterminantofphototrophicbacteriallongevityingrowtharrest AT mahongyu atpisamajordeterminantofphototrophicbacteriallongevityingrowtharrest AT foneselizabethm atpisamajordeterminantofphototrophicbacteriallongevityingrowtharrest AT morrisdavidr atpisamajordeterminantofphototrophicbacteriallongevityingrowtharrest AT harwoodcarolines atpisamajordeterminantofphototrophicbacteriallongevityingrowtharrest |