Cargando…
Neurobiologically Based Stratification of Recent-Onset Depression and Psychosis: Identification of Two Distinct Transdiagnostic Phenotypes
BACKGROUND: Identifying neurobiologically based transdiagnostic categories of depression and psychosis may elucidate heterogeneity and provide better candidates for predictive modeling. We aimed to identify clusters across patients with recent-onset depression (ROD) and recent-onset psychosis (ROP)...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10128104/ https://www.ncbi.nlm.nih.gov/pubmed/35717212 http://dx.doi.org/10.1016/j.biopsych.2022.03.021 |
_version_ | 1785030541924368384 |
---|---|
author | Lalousis, Paris Alexandros Schmaal, Lianne Wood, Stephen J. Reniers, Renate L.E.P. Barnes, Nicholas M. Chisholm, Katharine Griffiths, Sian Lowri Stainton, Alexandra Wen, Junhao Hwang, Gyujoon Davatzikos, Christos Wenzel, Julian Kambeitz-Ilankovic, Lana Andreou, Christina Bonivento, Carolina Dannlowski, Udo Ferro, Adele Lichtenstein, Theresa Riecher-Rössler, Anita Romer, Georg Rosen, Marlene Bertolino, Alessandro Borgwardt, Stefan Brambilla, Paolo Kambeitz, Joseph Lencer, Rebekka Pantelis, Christos Ruhrmann, Stephan Salokangas, Raimo K.R. Schultze-Lutter, Frauke Schmidt, André Meisenzahl, Eva Koutsouleris, Nikolaos Dwyer, Dominic Upthegrove, Rachel |
author_facet | Lalousis, Paris Alexandros Schmaal, Lianne Wood, Stephen J. Reniers, Renate L.E.P. Barnes, Nicholas M. Chisholm, Katharine Griffiths, Sian Lowri Stainton, Alexandra Wen, Junhao Hwang, Gyujoon Davatzikos, Christos Wenzel, Julian Kambeitz-Ilankovic, Lana Andreou, Christina Bonivento, Carolina Dannlowski, Udo Ferro, Adele Lichtenstein, Theresa Riecher-Rössler, Anita Romer, Georg Rosen, Marlene Bertolino, Alessandro Borgwardt, Stefan Brambilla, Paolo Kambeitz, Joseph Lencer, Rebekka Pantelis, Christos Ruhrmann, Stephan Salokangas, Raimo K.R. Schultze-Lutter, Frauke Schmidt, André Meisenzahl, Eva Koutsouleris, Nikolaos Dwyer, Dominic Upthegrove, Rachel |
author_sort | Lalousis, Paris Alexandros |
collection | PubMed |
description | BACKGROUND: Identifying neurobiologically based transdiagnostic categories of depression and psychosis may elucidate heterogeneity and provide better candidates for predictive modeling. We aimed to identify clusters across patients with recent-onset depression (ROD) and recent-onset psychosis (ROP) based on structural neuroimaging data. We hypothesized that these transdiagnostic clusters would identify patients with poor outcome and allow more accurate prediction of symptomatic remission than traditional diagnostic structures. METHODS: HYDRA (Heterogeneity through Discriminant Analysis) was trained on whole-brain volumetric measures from 577 participants from the discovery sample of the multisite PRONIA study to identify neurobiologically driven clusters, which were then externally validated in the PRONIA replication sample (n = 404) and three datasets of chronic samples (Centre for Biomedical Research Excellence, n = 146; Mind Clinical Imaging Consortium, n = 202; Munich, n = 470). RESULTS: The optimal clustering solution was two transdiagnostic clusters (cluster 1: n = 153, 67 ROP, 86 ROD; cluster 2: n = 149, 88 ROP, 61 ROD; adjusted Rand index = 0.618). The two clusters contained both patients with ROP and patients with ROD. One cluster had widespread gray matter volume deficits and more positive, negative, and functional deficits (impaired cluster), and one cluster revealed a more preserved neuroanatomical signature and more core depressive symptomatology (preserved cluster). The clustering solution was internally and externally validated and assessed for clinical utility in predicting 9-month symptomatic remission, outperforming traditional diagnostic structures. CONCLUSIONS: We identified two transdiagnostic neuroanatomically informed clusters that are clinically and biologically distinct, challenging current diagnostic boundaries in recent-onset mental health disorders. These results may aid understanding of the etiology of poor outcome patients transdiagnostically and improve development of stratified treatments. |
format | Online Article Text |
id | pubmed-10128104 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
record_format | MEDLINE/PubMed |
spelling | pubmed-101281042023-04-25 Neurobiologically Based Stratification of Recent-Onset Depression and Psychosis: Identification of Two Distinct Transdiagnostic Phenotypes Lalousis, Paris Alexandros Schmaal, Lianne Wood, Stephen J. Reniers, Renate L.E.P. Barnes, Nicholas M. Chisholm, Katharine Griffiths, Sian Lowri Stainton, Alexandra Wen, Junhao Hwang, Gyujoon Davatzikos, Christos Wenzel, Julian Kambeitz-Ilankovic, Lana Andreou, Christina Bonivento, Carolina Dannlowski, Udo Ferro, Adele Lichtenstein, Theresa Riecher-Rössler, Anita Romer, Georg Rosen, Marlene Bertolino, Alessandro Borgwardt, Stefan Brambilla, Paolo Kambeitz, Joseph Lencer, Rebekka Pantelis, Christos Ruhrmann, Stephan Salokangas, Raimo K.R. Schultze-Lutter, Frauke Schmidt, André Meisenzahl, Eva Koutsouleris, Nikolaos Dwyer, Dominic Upthegrove, Rachel Biol Psychiatry Article BACKGROUND: Identifying neurobiologically based transdiagnostic categories of depression and psychosis may elucidate heterogeneity and provide better candidates for predictive modeling. We aimed to identify clusters across patients with recent-onset depression (ROD) and recent-onset psychosis (ROP) based on structural neuroimaging data. We hypothesized that these transdiagnostic clusters would identify patients with poor outcome and allow more accurate prediction of symptomatic remission than traditional diagnostic structures. METHODS: HYDRA (Heterogeneity through Discriminant Analysis) was trained on whole-brain volumetric measures from 577 participants from the discovery sample of the multisite PRONIA study to identify neurobiologically driven clusters, which were then externally validated in the PRONIA replication sample (n = 404) and three datasets of chronic samples (Centre for Biomedical Research Excellence, n = 146; Mind Clinical Imaging Consortium, n = 202; Munich, n = 470). RESULTS: The optimal clustering solution was two transdiagnostic clusters (cluster 1: n = 153, 67 ROP, 86 ROD; cluster 2: n = 149, 88 ROP, 61 ROD; adjusted Rand index = 0.618). The two clusters contained both patients with ROP and patients with ROD. One cluster had widespread gray matter volume deficits and more positive, negative, and functional deficits (impaired cluster), and one cluster revealed a more preserved neuroanatomical signature and more core depressive symptomatology (preserved cluster). The clustering solution was internally and externally validated and assessed for clinical utility in predicting 9-month symptomatic remission, outperforming traditional diagnostic structures. CONCLUSIONS: We identified two transdiagnostic neuroanatomically informed clusters that are clinically and biologically distinct, challenging current diagnostic boundaries in recent-onset mental health disorders. These results may aid understanding of the etiology of poor outcome patients transdiagnostically and improve development of stratified treatments. 2022-10-01 2022-04-12 /pmc/articles/PMC10128104/ /pubmed/35717212 http://dx.doi.org/10.1016/j.biopsych.2022.03.021 Text en https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) ). |
spellingShingle | Article Lalousis, Paris Alexandros Schmaal, Lianne Wood, Stephen J. Reniers, Renate L.E.P. Barnes, Nicholas M. Chisholm, Katharine Griffiths, Sian Lowri Stainton, Alexandra Wen, Junhao Hwang, Gyujoon Davatzikos, Christos Wenzel, Julian Kambeitz-Ilankovic, Lana Andreou, Christina Bonivento, Carolina Dannlowski, Udo Ferro, Adele Lichtenstein, Theresa Riecher-Rössler, Anita Romer, Georg Rosen, Marlene Bertolino, Alessandro Borgwardt, Stefan Brambilla, Paolo Kambeitz, Joseph Lencer, Rebekka Pantelis, Christos Ruhrmann, Stephan Salokangas, Raimo K.R. Schultze-Lutter, Frauke Schmidt, André Meisenzahl, Eva Koutsouleris, Nikolaos Dwyer, Dominic Upthegrove, Rachel Neurobiologically Based Stratification of Recent-Onset Depression and Psychosis: Identification of Two Distinct Transdiagnostic Phenotypes |
title | Neurobiologically Based Stratification of Recent-Onset Depression and Psychosis: Identification of Two Distinct Transdiagnostic Phenotypes |
title_full | Neurobiologically Based Stratification of Recent-Onset Depression and Psychosis: Identification of Two Distinct Transdiagnostic Phenotypes |
title_fullStr | Neurobiologically Based Stratification of Recent-Onset Depression and Psychosis: Identification of Two Distinct Transdiagnostic Phenotypes |
title_full_unstemmed | Neurobiologically Based Stratification of Recent-Onset Depression and Psychosis: Identification of Two Distinct Transdiagnostic Phenotypes |
title_short | Neurobiologically Based Stratification of Recent-Onset Depression and Psychosis: Identification of Two Distinct Transdiagnostic Phenotypes |
title_sort | neurobiologically based stratification of recent-onset depression and psychosis: identification of two distinct transdiagnostic phenotypes |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10128104/ https://www.ncbi.nlm.nih.gov/pubmed/35717212 http://dx.doi.org/10.1016/j.biopsych.2022.03.021 |
work_keys_str_mv | AT lalousisparisalexandros neurobiologicallybasedstratificationofrecentonsetdepressionandpsychosisidentificationoftwodistincttransdiagnosticphenotypes AT schmaallianne neurobiologicallybasedstratificationofrecentonsetdepressionandpsychosisidentificationoftwodistincttransdiagnosticphenotypes AT woodstephenj neurobiologicallybasedstratificationofrecentonsetdepressionandpsychosisidentificationoftwodistincttransdiagnosticphenotypes AT reniersrenatelep neurobiologicallybasedstratificationofrecentonsetdepressionandpsychosisidentificationoftwodistincttransdiagnosticphenotypes AT barnesnicholasm neurobiologicallybasedstratificationofrecentonsetdepressionandpsychosisidentificationoftwodistincttransdiagnosticphenotypes AT chisholmkatharine neurobiologicallybasedstratificationofrecentonsetdepressionandpsychosisidentificationoftwodistincttransdiagnosticphenotypes AT griffithssianlowri neurobiologicallybasedstratificationofrecentonsetdepressionandpsychosisidentificationoftwodistincttransdiagnosticphenotypes AT staintonalexandra neurobiologicallybasedstratificationofrecentonsetdepressionandpsychosisidentificationoftwodistincttransdiagnosticphenotypes AT wenjunhao neurobiologicallybasedstratificationofrecentonsetdepressionandpsychosisidentificationoftwodistincttransdiagnosticphenotypes AT hwanggyujoon neurobiologicallybasedstratificationofrecentonsetdepressionandpsychosisidentificationoftwodistincttransdiagnosticphenotypes AT davatzikoschristos neurobiologicallybasedstratificationofrecentonsetdepressionandpsychosisidentificationoftwodistincttransdiagnosticphenotypes AT wenzeljulian neurobiologicallybasedstratificationofrecentonsetdepressionandpsychosisidentificationoftwodistincttransdiagnosticphenotypes AT kambeitzilankoviclana neurobiologicallybasedstratificationofrecentonsetdepressionandpsychosisidentificationoftwodistincttransdiagnosticphenotypes AT andreouchristina neurobiologicallybasedstratificationofrecentonsetdepressionandpsychosisidentificationoftwodistincttransdiagnosticphenotypes AT boniventocarolina neurobiologicallybasedstratificationofrecentonsetdepressionandpsychosisidentificationoftwodistincttransdiagnosticphenotypes AT dannlowskiudo neurobiologicallybasedstratificationofrecentonsetdepressionandpsychosisidentificationoftwodistincttransdiagnosticphenotypes AT ferroadele neurobiologicallybasedstratificationofrecentonsetdepressionandpsychosisidentificationoftwodistincttransdiagnosticphenotypes AT lichtensteintheresa neurobiologicallybasedstratificationofrecentonsetdepressionandpsychosisidentificationoftwodistincttransdiagnosticphenotypes AT riecherrossleranita neurobiologicallybasedstratificationofrecentonsetdepressionandpsychosisidentificationoftwodistincttransdiagnosticphenotypes AT romergeorg neurobiologicallybasedstratificationofrecentonsetdepressionandpsychosisidentificationoftwodistincttransdiagnosticphenotypes AT rosenmarlene neurobiologicallybasedstratificationofrecentonsetdepressionandpsychosisidentificationoftwodistincttransdiagnosticphenotypes AT bertolinoalessandro neurobiologicallybasedstratificationofrecentonsetdepressionandpsychosisidentificationoftwodistincttransdiagnosticphenotypes AT borgwardtstefan neurobiologicallybasedstratificationofrecentonsetdepressionandpsychosisidentificationoftwodistincttransdiagnosticphenotypes AT brambillapaolo neurobiologicallybasedstratificationofrecentonsetdepressionandpsychosisidentificationoftwodistincttransdiagnosticphenotypes AT kambeitzjoseph neurobiologicallybasedstratificationofrecentonsetdepressionandpsychosisidentificationoftwodistincttransdiagnosticphenotypes AT lencerrebekka neurobiologicallybasedstratificationofrecentonsetdepressionandpsychosisidentificationoftwodistincttransdiagnosticphenotypes AT pantelischristos neurobiologicallybasedstratificationofrecentonsetdepressionandpsychosisidentificationoftwodistincttransdiagnosticphenotypes AT ruhrmannstephan neurobiologicallybasedstratificationofrecentonsetdepressionandpsychosisidentificationoftwodistincttransdiagnosticphenotypes AT salokangasraimokr neurobiologicallybasedstratificationofrecentonsetdepressionandpsychosisidentificationoftwodistincttransdiagnosticphenotypes AT schultzelutterfrauke neurobiologicallybasedstratificationofrecentonsetdepressionandpsychosisidentificationoftwodistincttransdiagnosticphenotypes AT schmidtandre neurobiologicallybasedstratificationofrecentonsetdepressionandpsychosisidentificationoftwodistincttransdiagnosticphenotypes AT meisenzahleva neurobiologicallybasedstratificationofrecentonsetdepressionandpsychosisidentificationoftwodistincttransdiagnosticphenotypes AT koutsoulerisnikolaos neurobiologicallybasedstratificationofrecentonsetdepressionandpsychosisidentificationoftwodistincttransdiagnosticphenotypes AT dwyerdominic neurobiologicallybasedstratificationofrecentonsetdepressionandpsychosisidentificationoftwodistincttransdiagnosticphenotypes AT upthegroverachel neurobiologicallybasedstratificationofrecentonsetdepressionandpsychosisidentificationoftwodistincttransdiagnosticphenotypes AT neurobiologicallybasedstratificationofrecentonsetdepressionandpsychosisidentificationoftwodistincttransdiagnosticphenotypes |