Cargando…

Neurobiologically Based Stratification of Recent-Onset Depression and Psychosis: Identification of Two Distinct Transdiagnostic Phenotypes

BACKGROUND: Identifying neurobiologically based transdiagnostic categories of depression and psychosis may elucidate heterogeneity and provide better candidates for predictive modeling. We aimed to identify clusters across patients with recent-onset depression (ROD) and recent-onset psychosis (ROP)...

Descripción completa

Detalles Bibliográficos
Autores principales: Lalousis, Paris Alexandros, Schmaal, Lianne, Wood, Stephen J., Reniers, Renate L.E.P., Barnes, Nicholas M., Chisholm, Katharine, Griffiths, Sian Lowri, Stainton, Alexandra, Wen, Junhao, Hwang, Gyujoon, Davatzikos, Christos, Wenzel, Julian, Kambeitz-Ilankovic, Lana, Andreou, Christina, Bonivento, Carolina, Dannlowski, Udo, Ferro, Adele, Lichtenstein, Theresa, Riecher-Rössler, Anita, Romer, Georg, Rosen, Marlene, Bertolino, Alessandro, Borgwardt, Stefan, Brambilla, Paolo, Kambeitz, Joseph, Lencer, Rebekka, Pantelis, Christos, Ruhrmann, Stephan, Salokangas, Raimo K.R., Schultze-Lutter, Frauke, Schmidt, André, Meisenzahl, Eva, Koutsouleris, Nikolaos, Dwyer, Dominic, Upthegrove, Rachel
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10128104/
https://www.ncbi.nlm.nih.gov/pubmed/35717212
http://dx.doi.org/10.1016/j.biopsych.2022.03.021
_version_ 1785030541924368384
author Lalousis, Paris Alexandros
Schmaal, Lianne
Wood, Stephen J.
Reniers, Renate L.E.P.
Barnes, Nicholas M.
Chisholm, Katharine
Griffiths, Sian Lowri
Stainton, Alexandra
Wen, Junhao
Hwang, Gyujoon
Davatzikos, Christos
Wenzel, Julian
Kambeitz-Ilankovic, Lana
Andreou, Christina
Bonivento, Carolina
Dannlowski, Udo
Ferro, Adele
Lichtenstein, Theresa
Riecher-Rössler, Anita
Romer, Georg
Rosen, Marlene
Bertolino, Alessandro
Borgwardt, Stefan
Brambilla, Paolo
Kambeitz, Joseph
Lencer, Rebekka
Pantelis, Christos
Ruhrmann, Stephan
Salokangas, Raimo K.R.
Schultze-Lutter, Frauke
Schmidt, André
Meisenzahl, Eva
Koutsouleris, Nikolaos
Dwyer, Dominic
Upthegrove, Rachel
author_facet Lalousis, Paris Alexandros
Schmaal, Lianne
Wood, Stephen J.
Reniers, Renate L.E.P.
Barnes, Nicholas M.
Chisholm, Katharine
Griffiths, Sian Lowri
Stainton, Alexandra
Wen, Junhao
Hwang, Gyujoon
Davatzikos, Christos
Wenzel, Julian
Kambeitz-Ilankovic, Lana
Andreou, Christina
Bonivento, Carolina
Dannlowski, Udo
Ferro, Adele
Lichtenstein, Theresa
Riecher-Rössler, Anita
Romer, Georg
Rosen, Marlene
Bertolino, Alessandro
Borgwardt, Stefan
Brambilla, Paolo
Kambeitz, Joseph
Lencer, Rebekka
Pantelis, Christos
Ruhrmann, Stephan
Salokangas, Raimo K.R.
Schultze-Lutter, Frauke
Schmidt, André
Meisenzahl, Eva
Koutsouleris, Nikolaos
Dwyer, Dominic
Upthegrove, Rachel
author_sort Lalousis, Paris Alexandros
collection PubMed
description BACKGROUND: Identifying neurobiologically based transdiagnostic categories of depression and psychosis may elucidate heterogeneity and provide better candidates for predictive modeling. We aimed to identify clusters across patients with recent-onset depression (ROD) and recent-onset psychosis (ROP) based on structural neuroimaging data. We hypothesized that these transdiagnostic clusters would identify patients with poor outcome and allow more accurate prediction of symptomatic remission than traditional diagnostic structures. METHODS: HYDRA (Heterogeneity through Discriminant Analysis) was trained on whole-brain volumetric measures from 577 participants from the discovery sample of the multisite PRONIA study to identify neurobiologically driven clusters, which were then externally validated in the PRONIA replication sample (n = 404) and three datasets of chronic samples (Centre for Biomedical Research Excellence, n = 146; Mind Clinical Imaging Consortium, n = 202; Munich, n = 470). RESULTS: The optimal clustering solution was two transdiagnostic clusters (cluster 1: n = 153, 67 ROP, 86 ROD; cluster 2: n = 149, 88 ROP, 61 ROD; adjusted Rand index = 0.618). The two clusters contained both patients with ROP and patients with ROD. One cluster had widespread gray matter volume deficits and more positive, negative, and functional deficits (impaired cluster), and one cluster revealed a more preserved neuroanatomical signature and more core depressive symptomatology (preserved cluster). The clustering solution was internally and externally validated and assessed for clinical utility in predicting 9-month symptomatic remission, outperforming traditional diagnostic structures. CONCLUSIONS: We identified two transdiagnostic neuroanatomically informed clusters that are clinically and biologically distinct, challenging current diagnostic boundaries in recent-onset mental health disorders. These results may aid understanding of the etiology of poor outcome patients transdiagnostically and improve development of stratified treatments.
format Online
Article
Text
id pubmed-10128104
institution National Center for Biotechnology Information
language English
publishDate 2022
record_format MEDLINE/PubMed
spelling pubmed-101281042023-04-25 Neurobiologically Based Stratification of Recent-Onset Depression and Psychosis: Identification of Two Distinct Transdiagnostic Phenotypes Lalousis, Paris Alexandros Schmaal, Lianne Wood, Stephen J. Reniers, Renate L.E.P. Barnes, Nicholas M. Chisholm, Katharine Griffiths, Sian Lowri Stainton, Alexandra Wen, Junhao Hwang, Gyujoon Davatzikos, Christos Wenzel, Julian Kambeitz-Ilankovic, Lana Andreou, Christina Bonivento, Carolina Dannlowski, Udo Ferro, Adele Lichtenstein, Theresa Riecher-Rössler, Anita Romer, Georg Rosen, Marlene Bertolino, Alessandro Borgwardt, Stefan Brambilla, Paolo Kambeitz, Joseph Lencer, Rebekka Pantelis, Christos Ruhrmann, Stephan Salokangas, Raimo K.R. Schultze-Lutter, Frauke Schmidt, André Meisenzahl, Eva Koutsouleris, Nikolaos Dwyer, Dominic Upthegrove, Rachel Biol Psychiatry Article BACKGROUND: Identifying neurobiologically based transdiagnostic categories of depression and psychosis may elucidate heterogeneity and provide better candidates for predictive modeling. We aimed to identify clusters across patients with recent-onset depression (ROD) and recent-onset psychosis (ROP) based on structural neuroimaging data. We hypothesized that these transdiagnostic clusters would identify patients with poor outcome and allow more accurate prediction of symptomatic remission than traditional diagnostic structures. METHODS: HYDRA (Heterogeneity through Discriminant Analysis) was trained on whole-brain volumetric measures from 577 participants from the discovery sample of the multisite PRONIA study to identify neurobiologically driven clusters, which were then externally validated in the PRONIA replication sample (n = 404) and three datasets of chronic samples (Centre for Biomedical Research Excellence, n = 146; Mind Clinical Imaging Consortium, n = 202; Munich, n = 470). RESULTS: The optimal clustering solution was two transdiagnostic clusters (cluster 1: n = 153, 67 ROP, 86 ROD; cluster 2: n = 149, 88 ROP, 61 ROD; adjusted Rand index = 0.618). The two clusters contained both patients with ROP and patients with ROD. One cluster had widespread gray matter volume deficits and more positive, negative, and functional deficits (impaired cluster), and one cluster revealed a more preserved neuroanatomical signature and more core depressive symptomatology (preserved cluster). The clustering solution was internally and externally validated and assessed for clinical utility in predicting 9-month symptomatic remission, outperforming traditional diagnostic structures. CONCLUSIONS: We identified two transdiagnostic neuroanatomically informed clusters that are clinically and biologically distinct, challenging current diagnostic boundaries in recent-onset mental health disorders. These results may aid understanding of the etiology of poor outcome patients transdiagnostically and improve development of stratified treatments. 2022-10-01 2022-04-12 /pmc/articles/PMC10128104/ /pubmed/35717212 http://dx.doi.org/10.1016/j.biopsych.2022.03.021 Text en https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) ).
spellingShingle Article
Lalousis, Paris Alexandros
Schmaal, Lianne
Wood, Stephen J.
Reniers, Renate L.E.P.
Barnes, Nicholas M.
Chisholm, Katharine
Griffiths, Sian Lowri
Stainton, Alexandra
Wen, Junhao
Hwang, Gyujoon
Davatzikos, Christos
Wenzel, Julian
Kambeitz-Ilankovic, Lana
Andreou, Christina
Bonivento, Carolina
Dannlowski, Udo
Ferro, Adele
Lichtenstein, Theresa
Riecher-Rössler, Anita
Romer, Georg
Rosen, Marlene
Bertolino, Alessandro
Borgwardt, Stefan
Brambilla, Paolo
Kambeitz, Joseph
Lencer, Rebekka
Pantelis, Christos
Ruhrmann, Stephan
Salokangas, Raimo K.R.
Schultze-Lutter, Frauke
Schmidt, André
Meisenzahl, Eva
Koutsouleris, Nikolaos
Dwyer, Dominic
Upthegrove, Rachel
Neurobiologically Based Stratification of Recent-Onset Depression and Psychosis: Identification of Two Distinct Transdiagnostic Phenotypes
title Neurobiologically Based Stratification of Recent-Onset Depression and Psychosis: Identification of Two Distinct Transdiagnostic Phenotypes
title_full Neurobiologically Based Stratification of Recent-Onset Depression and Psychosis: Identification of Two Distinct Transdiagnostic Phenotypes
title_fullStr Neurobiologically Based Stratification of Recent-Onset Depression and Psychosis: Identification of Two Distinct Transdiagnostic Phenotypes
title_full_unstemmed Neurobiologically Based Stratification of Recent-Onset Depression and Psychosis: Identification of Two Distinct Transdiagnostic Phenotypes
title_short Neurobiologically Based Stratification of Recent-Onset Depression and Psychosis: Identification of Two Distinct Transdiagnostic Phenotypes
title_sort neurobiologically based stratification of recent-onset depression and psychosis: identification of two distinct transdiagnostic phenotypes
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10128104/
https://www.ncbi.nlm.nih.gov/pubmed/35717212
http://dx.doi.org/10.1016/j.biopsych.2022.03.021
work_keys_str_mv AT lalousisparisalexandros neurobiologicallybasedstratificationofrecentonsetdepressionandpsychosisidentificationoftwodistincttransdiagnosticphenotypes
AT schmaallianne neurobiologicallybasedstratificationofrecentonsetdepressionandpsychosisidentificationoftwodistincttransdiagnosticphenotypes
AT woodstephenj neurobiologicallybasedstratificationofrecentonsetdepressionandpsychosisidentificationoftwodistincttransdiagnosticphenotypes
AT reniersrenatelep neurobiologicallybasedstratificationofrecentonsetdepressionandpsychosisidentificationoftwodistincttransdiagnosticphenotypes
AT barnesnicholasm neurobiologicallybasedstratificationofrecentonsetdepressionandpsychosisidentificationoftwodistincttransdiagnosticphenotypes
AT chisholmkatharine neurobiologicallybasedstratificationofrecentonsetdepressionandpsychosisidentificationoftwodistincttransdiagnosticphenotypes
AT griffithssianlowri neurobiologicallybasedstratificationofrecentonsetdepressionandpsychosisidentificationoftwodistincttransdiagnosticphenotypes
AT staintonalexandra neurobiologicallybasedstratificationofrecentonsetdepressionandpsychosisidentificationoftwodistincttransdiagnosticphenotypes
AT wenjunhao neurobiologicallybasedstratificationofrecentonsetdepressionandpsychosisidentificationoftwodistincttransdiagnosticphenotypes
AT hwanggyujoon neurobiologicallybasedstratificationofrecentonsetdepressionandpsychosisidentificationoftwodistincttransdiagnosticphenotypes
AT davatzikoschristos neurobiologicallybasedstratificationofrecentonsetdepressionandpsychosisidentificationoftwodistincttransdiagnosticphenotypes
AT wenzeljulian neurobiologicallybasedstratificationofrecentonsetdepressionandpsychosisidentificationoftwodistincttransdiagnosticphenotypes
AT kambeitzilankoviclana neurobiologicallybasedstratificationofrecentonsetdepressionandpsychosisidentificationoftwodistincttransdiagnosticphenotypes
AT andreouchristina neurobiologicallybasedstratificationofrecentonsetdepressionandpsychosisidentificationoftwodistincttransdiagnosticphenotypes
AT boniventocarolina neurobiologicallybasedstratificationofrecentonsetdepressionandpsychosisidentificationoftwodistincttransdiagnosticphenotypes
AT dannlowskiudo neurobiologicallybasedstratificationofrecentonsetdepressionandpsychosisidentificationoftwodistincttransdiagnosticphenotypes
AT ferroadele neurobiologicallybasedstratificationofrecentonsetdepressionandpsychosisidentificationoftwodistincttransdiagnosticphenotypes
AT lichtensteintheresa neurobiologicallybasedstratificationofrecentonsetdepressionandpsychosisidentificationoftwodistincttransdiagnosticphenotypes
AT riecherrossleranita neurobiologicallybasedstratificationofrecentonsetdepressionandpsychosisidentificationoftwodistincttransdiagnosticphenotypes
AT romergeorg neurobiologicallybasedstratificationofrecentonsetdepressionandpsychosisidentificationoftwodistincttransdiagnosticphenotypes
AT rosenmarlene neurobiologicallybasedstratificationofrecentonsetdepressionandpsychosisidentificationoftwodistincttransdiagnosticphenotypes
AT bertolinoalessandro neurobiologicallybasedstratificationofrecentonsetdepressionandpsychosisidentificationoftwodistincttransdiagnosticphenotypes
AT borgwardtstefan neurobiologicallybasedstratificationofrecentonsetdepressionandpsychosisidentificationoftwodistincttransdiagnosticphenotypes
AT brambillapaolo neurobiologicallybasedstratificationofrecentonsetdepressionandpsychosisidentificationoftwodistincttransdiagnosticphenotypes
AT kambeitzjoseph neurobiologicallybasedstratificationofrecentonsetdepressionandpsychosisidentificationoftwodistincttransdiagnosticphenotypes
AT lencerrebekka neurobiologicallybasedstratificationofrecentonsetdepressionandpsychosisidentificationoftwodistincttransdiagnosticphenotypes
AT pantelischristos neurobiologicallybasedstratificationofrecentonsetdepressionandpsychosisidentificationoftwodistincttransdiagnosticphenotypes
AT ruhrmannstephan neurobiologicallybasedstratificationofrecentonsetdepressionandpsychosisidentificationoftwodistincttransdiagnosticphenotypes
AT salokangasraimokr neurobiologicallybasedstratificationofrecentonsetdepressionandpsychosisidentificationoftwodistincttransdiagnosticphenotypes
AT schultzelutterfrauke neurobiologicallybasedstratificationofrecentonsetdepressionandpsychosisidentificationoftwodistincttransdiagnosticphenotypes
AT schmidtandre neurobiologicallybasedstratificationofrecentonsetdepressionandpsychosisidentificationoftwodistincttransdiagnosticphenotypes
AT meisenzahleva neurobiologicallybasedstratificationofrecentonsetdepressionandpsychosisidentificationoftwodistincttransdiagnosticphenotypes
AT koutsoulerisnikolaos neurobiologicallybasedstratificationofrecentonsetdepressionandpsychosisidentificationoftwodistincttransdiagnosticphenotypes
AT dwyerdominic neurobiologicallybasedstratificationofrecentonsetdepressionandpsychosisidentificationoftwodistincttransdiagnosticphenotypes
AT upthegroverachel neurobiologicallybasedstratificationofrecentonsetdepressionandpsychosisidentificationoftwodistincttransdiagnosticphenotypes
AT neurobiologicallybasedstratificationofrecentonsetdepressionandpsychosisidentificationoftwodistincttransdiagnosticphenotypes