Cargando…
Feature selection for high dimensional microarray gene expression data via weighted signal to noise ratio
Feature selection in high dimensional gene expression datasets not only reduces the dimension of the data, but also the execution time and computational cost of the underlying classifier. The current study introduces a novel feature selection method called weighted signal to noise ratio (W(SNR)) by...
Autores principales: | Hamraz, Muhammad, Ali, Amjad, Mashwani, Wali Khan, Aldahmani, Saeed, Khan, Zardad |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10128961/ https://www.ncbi.nlm.nih.gov/pubmed/37098036 http://dx.doi.org/10.1371/journal.pone.0284619 |
Ejemplares similares
-
Robust proportional overlapping analysis for feature selection in binary classification within functional genomic experiments
por: Hamraz, Muhammad, et al.
Publicado: (2021) -
Soft computing techniques for forecasting of COVID-19 in Pakistan
por: Naeem, Muhammad, et al.
Publicado: (2023) -
A novel family of lifetime distribution with applications to real and simulated data
por: Ijaz, Muhammad, et al.
Publicado: (2020) -
Unit Root Testing and Estimation in Nonlinear ESTAR Models with Normal and Non-Normal Errors
por: Khalil, Umair, et al.
Publicado: (2016) -
q-rung orthopair fuzzy 2-tuple linguistic clustering algorithm and its applications to clustering analysis
por: Abbas, Fatima, et al.
Publicado: (2023)