Cargando…
17 Data Loofah: A web-based app for efficiently identifying erroneous data
OBJECTIVES/GOALS: The goal was to create and deploy an intuitive, easy-to-use tool that clinical investigators can apply to their data to identify erroneous or inconsistent data entries. Investigators can then correct any errors prior to sharing the data with their statistician for analysis. METHODS...
Autores principales: | Fine, Jeffrey R., Taylor, Sandra L. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cambridge University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10129596/ http://dx.doi.org/10.1017/cts.2023.117 |
Ejemplares similares
-
58 Utilizing VA Data to Define Long COVID and Identify Patients at Risk
por: Elkin, Peter L., et al.
Publicado: (2023) -
44 Seminar series on Anti-Racism in Data and Analysis
por: Lapidus, Jodi, et al.
Publicado: (2023) -
57 Utility of Digital Phenotyping in Big Data to Answer Clinical Questions: Puberty as a Transdisciplinary Science Case Example
por: Schnabel, David J., et al.
Publicado: (2023) -
2 A CTS Team Approach to Topological Data Analysis of Electronic Health Records for Subtyping and Clinical Outcomes Prediction in Patients with COVID-19
por: Skaf, Yara, et al.
Publicado: (2023) -
20 Discovery of Novel African American Genetic Risk Factors for Breast Cancer by Analyzing Whole Genome Sequencing Data of the Alabama Hereditary Cancer Cohort
por: LoBue, Troy, et al.
Publicado: (2023)